设曲线x² y² z²=a²,x² y²=ax(z≥0,a>0),求坐标曲线积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:54:10
设曲线x² y² z²=a²,x² y²=ax(z≥0,a>0),求坐标曲线积分
∮(x^2+2y+1)ds x^2+y^2+z^2=a^2 x+y+z=0 曲线积分

注意到积分曲线关于x,y,z是轮换对称的,因此有∮x²ds=∮y²ds=∮z²ds=(1/3)∮(x²+y²+z²)ds=(1/3)∮a&#

设p(a,b)对应的复数是Z,点Q(x,y)对应的复数是2Z+3-4i,如果P点在曲线ㄧZㄧ=1上运动求Q点轨迹

Q点轨迹是以点(3,-4)为圆心,2为半径的圆.再问:请给出详细步骤,谢谢再答:设Q点对应负数w,在w=2Z+3-4i2z=w-(3-4i)因为|z|=1所以|w-(3-4i)|=2这说明Q点轨迹是以

设函数f(x)=ax+1/x+b(a,b属于Z)曲线y=f(x)在点(2,f(2))处的切线方程为y=3.证明曲线y=f

f‘(x)=a-1/x²由题意得f(2)=2a+1/2+b=3f’(2)=a-1/4=0算出来不对啊--||额,暂时忽略这个问题f(x)=x+1/x-1f'(x)=1-1/x²设切

z=x*y是什么曲线在直角坐标系中

是一个马鞍面你可以用matlab软件画出来看看

高中数学 设函数f(x)=ax+1/(x+b) (a,b属于Z) 曲线y=f(x)在点(0,f(

y=ax+1/(x+b)y'=a-1/(x+b)^2x=2时,y'=a-1/(2+b)^2=0且f(2)=3,即2a+1/(2+b)=3解得a=1,b=-1(非整数解舍去)f(x)=x+1/(x-1)

设X,Y,Z都是整数,满足条件(X-Y)(Y-Z)(Z-X)=X+Y+Z,试证明X+Y+Z能被27整除

这样来说明,按3分类,一个数被3除只可能余0,1,2三种情况,如果,xyz这三个数同余,那么x-y,y-z,x-z都是3的倍数,则乘积就是27的倍数,即x+y+z是27的倍数成立除此外,还有两种可能,

设z=ln(x^z×y^x),求dz

z=lnx^z+lny^x=zlnx+xlnyz=xlny/(1-lnx)先关于x求偏导,把y看做常数,再对y求偏导,把x看做常数dz=0dx+x/y(1-lnx)dy(此处省略了一些计算过程,)dz

1.设集合A=【x²4+3y²4=1],B=[Y=X²】,则A∩B等于? 2.设全集U=R,集合A=【x²-x-30<0

解题思路:同学你好,本题目要注意集合的元素的属性,分清集合表示的是定义域还是值班域,再求交集解题过程:

设关于x的函数y=2cos²x-2acosx-(2a+1)的

解题思路:考查三角函数的性质,二次函数的最值解题过程:附件最终答案:略

已知曲线fx=ax的三次方+2(a-1)x²-4x,a∈R 1、求曲线y=fx所经过的定点的坐标 2、当a=1时,求曲线

解题思路:(1)整理解析式,求定点(2)设切点,求斜率,代入点斜式解题过程:

设Γ为曲线x=t,y=t^2,z=t^3上相应于t从0变为1的曲线弧.第二类曲线积分∫P(x,y,z)dx+Q(x,y,

T=(x',y',z')=(1,2t,3t^2)所以,三个方向余弦分别为cosα=1/√(1+4t^2+9t^4)cosβ=2t/√(1+4t^2+9t^4)cosγ=3t^2/√(1+4t^2+9t

设M=(a/a=x^2-y^2,x,y属于Z),求证:

1.当x=n+1y=n时a=2n+1为所有奇数对这个集合来说,偶数属于它是可能的,但是不是所有偶数均属于这个集合,可所有奇数是属于这个集合的.我不懂你的问题所有表达的意思..偶数和这题的证明毫无冲突啊

1.设X ,Y,Z 成等差数列,代数式(X-Z)*(X-Z)+ 4(X-Y)(Z-Y)=

1.设X,Y,Z成等差数列,代数式(X-Z)*(X-Z)+4(X-Y)(Z-Y)=(-2d)^2-4d*d=02.设数列{An}的通项公式为An=4n+3求证:{An}为等差数列.An=4n+3An+

设Z=X+Y,其中X,Y满足X+2Y>=0,X-Y

(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3

设x/z=ln*z/y ,求求az/ax,az/ay,a²z/axay

设x/z=ln(z/y),求∂z/∂x;∂z/∂y;∂²z/∂x∂y;由x/z=ln(z/y)得x=z(l

2 设函数F(X)=a㏑x/x+1+b/x,曲线y= f(x)

(1)切线方程变形为y=(-1/2)(x-1)+1可见斜率k=-1/2,f(1)=1f'(x)=[a(x+1)/x-alnx]/(x+1)^2-b/x^2已知k=f'(1)=(2a)/4-b=-1/2