设矩阵A的三个特征值分别为abc,则a+b c等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:38:36
设矩阵A的三个特征值分别为abc,则a+b c等于
设A为n阶矩阵,证明A的转置与A的特征值相同.

A^T指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0A的转置的特征多项式|λE-A^T|=0,因(λE-A)^T=(λE)^T-A^T=λE-A^T所以|λE-A|=|(λE-A

设A,B 分别是m*n,n*m矩阵,证明:AB和BA有相同的非零特征值.

如果a是AB的非零特征值,则存在非零向量x,使得 ABx=ax **.而Bx不等于零,否则若Bx=0有ax=0,与a非零和x非零矛盾.记:Bx=y.由**左乘B,可知BAy=ay.因y为非零向量,所以

线性代数中,三阶实对称矩阵A的三个特征值所对应的特征向量分别为 -1 -1 1 ,1 -2 -1求另一个特征值所对应的特

实对称矩阵的属于不同特征值的特征向量正交所以,求出齐次线性方程组-x1-x2+x3=0x1-2x2-x3=0的一个非零解即满足要求,如(1,0,1)^T

设三阶矩阵A的三个特征值为1,1,2,且a1,a2,a3分别为对应的特征向量,则

根据题设,a1,a2,a3满足(根据特征向量定义)(A-E)a1=0(A-E)a2=0(A-2E)a3=0对于矩阵2E-A,他的特征值为1,1,0(因为A-2E的特征值是A的特征值-2,为-1,-1,

设三阶矩阵A的三个特征值为-1,3,5,则A-3E的特征值?

知识点:若a是A的特征值,则f(a)是f(A)的特征值.f(x)是多项式因为三阶矩阵A的三个特征值为-1,3,5所以A-3E的特征值为-1-3=-4,3-3=0,5-3=2.再问:做题突然发现这是盲点

可逆矩阵A的三个特征值分别为1,2,-2,则A*的三个特征值是什么?|A|的代数余子式A11,A22,A33之和A11+

A的特征值为1,2,-2那么A^(-1)的特征值为1,1/2,-1/2|A|=1*2*(-2)=-4A*=|A|A^(-1),那么A*的特征值为-4*1,-4*(1/2),-4*(-1/2)A11+A

线性代数,设A为3阶实对称矩阵,且满足R(A)=2,A2=A,求A的三个特征值.

A2=A是什么?打错了吧,麻烦修改一下.如果是A^2=A即A^2-A=0写成特征值方程λ^2-λ=0所以A可能的特征值是,0和1因为A的秩是2,所以是1,1,0方法总结一下就是------------

A为三阶矩阵,E为三阶单位矩阵A的三个特征值分别为1,2,-3,则下列矩阵中是可逆矩阵的是:A.A-E B.A+E C.

若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值

只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ

设a是三阶矩阵,特征值为2,2,3,则a^2的特征值为__________;a^2-2a+e的特征值为_

则a^2的特征值为4,4,9a^2-2a+e的特征值为1,1,4再问:谢谢你啦,,,

设A为n阶矩阵,证明A的转置与A的特征值相同

(λE-A)′=λE-A′,|(λE-A)′|=|λE-A|∴|λE-A|=|λE-A′|,A与A′特征多项式相同,所以特征值也一样.

设a,b为矩阵A的属于不同特征值的特征向量,则()

明显选CA错B错因为若ab里有一个为0,则Aa或Ab就有一个零向量,零向量跟任何向量都线性相关.C对若k1a+K2b是A的特征向量,那么A的特征向量就线性相关了.但特征向量一定是线性无关的.

设λ是矩阵A为的特征值,则矩阵4A^3-2A^2+3A-2E的一个特征值为

这是定理4A^3-2A^2+3A-2E的一个特征值为4λ^3-2λ^2+3λ-2.

设三界是对称矩阵A满足A^3-3A^2+5A-3E=0,则A的三个特征值为?

特征方程为r³-3r²+5r-3=0r³-r²-2r²+2r+3r-3=0r²(r-1)-2r(r-1)+3(r-1)=0(r-1)(r&#

线代矩阵设A为三阶矩阵,A的特征值为-2,-1/2,2,则下列矩阵中可逆的是()A E+2AB 3E+2AC 2E+AD

选B再答:根据特征值的概念|λE-A|=0所以A,C,D中矩阵的行列式都等于0的,不可逆再答:根据特征值的概念|λE-A|=0所以A,C,D中矩阵的行列式都等于0的,不可逆

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.

设A为3阶矩阵,其特征值分别为-1,2,3,对应的特征向量分别为X1,X2,X3.若P=(X1,X2,X3)

|A|=-1*2*3=-6A*的特征值为(|A|/λ):6,-3,-2对应的特征向量依然是x1,x2,x3所以(B)正确

设3阶矩阵A的特征值分别为 1 2 3,求|E+2A|

E+2A的特征值为3,5,7所以|E+2A|=105一般地,若A的特征值为λ,则f(A)的特征值为f(λ).其中f(λ)是多项式.再问:E+2A的特征值为3,5,7怎么算呢再答:一般地,若A的特征值为