设随机变量x和y均服从[a b]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:59:34
设随机变量x和y均服从[a b]
设两个随机变量X 和Y 相互独立, X 服从均值为2 的指数分布,Y 服从均 值为4 的指数分布,问X>Y的概率是多

X和Y相互独立-->f(x,y)=f(x)*f(y)=(1/2)e^(-x/2)*(1/4)e^(-y/4)p(X>Y)=∫∫f(x,y)dxdy(积分区域为y=0,y=x所围面积)=∫(0-->∞)

设随机变量X与Y相互独立,并且均服从U(0, θ),求E(max{X,Y})

这是双变量函数的概率分布,先求出概率分布函数,再求导就得到密度函数.我明白你的意思,你是想让别人帮你做出来.我提供思路.你从分布函数出发,首先求z=max(x,y)的分布函数,它等于p(Z再问:这个混

设随机变量(X,Y)服从区域D={(x,y)|x^2+y^2

积分区域是圆S=πf(x,y)=1/π,-√(2y-y²)再问:没问题了

概率论中的问题设随机变量X ,Y均服从标准正态分布则 其中有选项A .X+Y服从正态分布,该选项错误,请问为什么?

你好!定理是当X与Y独立时,X+Y服从正态分布,而当X与Y不独立时,X+Y不一定服从正态分布。经济数学团队帮你解答,请及时采纳。谢谢!

设随机变量X和Y都服从标准正态分布,则(  )

对于选项(A):两个随机变量X和Y都服从标准正态分布,但它们的和不一定服从正态分布,因为X和Y不是相互独立的.倘若X和Y相互独立或者X和Y的联合分布为正态分布,则可以推出X+Y服从正态分布,否则不一定

设随机变量X和Y相互独立,均服从[0,1]区间上的均匀分布,求min(X,Y)的概率密度函数

用最小值公式.就一下出来了.再问:能告诉我答案吗?再答:Z=min{X,Y}f(z)=2(1-z)0

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)].

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望

E(X-Y)=∑∞P(X1)(Y1)(X1-Y1)=∫∞∫∞f(x)f(y)(x-y)dxdy=0希望能帮到您~

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

设随机变量X和Y都服从正态分布,则(X,Y)一定服从二维正态分布吗?

不独立的话,函数形状在三维空间就不是那种草帽型扩散的函数相互独立联合密度里新的指数是-{(x-u1)^2/o^1+(y-u2)^2/o2^2}(x,y)在圆心为(u1,u2),双轴比例为o1,o2的所

设随机变量x服从(0,1)上的均匀分布,求Y=e^X的数学期望和方差

XU(0,1)密度函数:等于:1当0再问:这是标准答案了吧?再答:按公式计算而得:若x的概率密度函数为f(x),那么随机变量x的函数g(x)的数学期望和方差分别为:E[g(x)]=∫g(x)f(x)d

设随机变量x服从(0,1)上的均匀分布,Y=e^x 求y的数学期望 和 方差

楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)]

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

设随机变量X和Y相互独立,X服从区间(0.2)的均匀分布,Y服从均值为1/2的指数分布 求P(Y《X)

X和Y相互独立则有fx(x)*fy(y)=f(x,y)Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2然后就可以对联合分布P(Y

设随机变量X服从指数分布,求随机变量Y=min(X,2)的分布函数

可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!

设随机变量X,Y独立,且均服从参数为λ的指数分布,求:X/(X+Y)的分布

设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.

1:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望 有步

由于格式问题,积分无法在这里显示,需要详细解答请去我的百度空间——>相册——>答案中去看.