o为三角形ABC的垂心,OA 2OB 3OC=0,A,的度数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:11:05
o为三角形ABC的垂心,OA 2OB 3OC=0,A,的度数
P是三角形ABC所在平面外一点,且PA垂直平面ABC,若O、Q分别是三角形ABC和三角形PBC的垂心,

延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,

在四面体P-ABC中,PA、PB、PC两两互相垂直,P在ABC射影为O,试用向量法证明O为三角形ABC的垂心.

证明:向量AB=向量PB-向量PA,向量CO=向量PO-向量PC依题得:向量PO*向量AB=0,即向量PO*(向量PB-向量PA)=0,向量PO*向量PB-向量PO*向量PA=0,所以向量AB*向量C

已知O为三角形ABC所在平面内一点,若OA *OB=OB*OC=OC*OA,则点O事三角形ABC的什么心?

OA*OB=OB*OC0=OB*(OA-OC)=OB*CA,OB⊥CA同理OA⊥BCOC⊥ABO是⊿ABC的垂心.请留意,由此可以得到三角形三个高交于一点的一个向量证明方法,楼主不妨试试.(即从OA⊥

1) O 为三角形ABC的垂心 怎么证明向量OA*OB=OB*OC=OC *OA 2)O为ABC的内心,怎么证明aOA+

1)向量OA*OB=-|OA|*|OB|*cos(∠1+∠2)向量OB*OC=-|OC|*|OB|*cos(∠3+∠4)向量OC*OA=-|OC|*|OA|*cos(∠5+∠6)∵∠1+∠5+∠6=∠

设三角形ABC的外心为O,垂心为H,重心为G,求证:O,G,H三点共线

向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线

已知O为三角形ABC所在平面内一点,若OA+OB+OC=O,则点O事三角形ABC的什么心

取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向

已知圆O为三角形ABC的外接圆,边长为6,求圆O的半径

题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3

O为△ABC中线的交点,则三角形ABC的面积:三角形OBC的面积为多少?

三角形ABC的面积:三角形OBC的面积=3:1再问:麻烦你写出详细的过程,好吗?再答:设BC的中点为D,在三角形ABC中,作BC上的高AH,在三角形OBC中,作BC上的高OH'。三角形ADH相似三角形

三棱锥P-ABC,PA垂直BC,PB垂直AC,PO垂直平面ABC,垂足为O,证O为底面三角形ABC的垂心

连接AO,BO,设AO,BO延长线(或是其本身)分别交BC,AC于点D,E,连接PD,PE∵PO⊥面ABC∴PO⊥BC,PO⊥AC又∵PA⊥BC,PB⊥AC∴BC⊥面PAD(O在面PAD上),AC⊥面

三角形ABC的顶点均在抛物线y2=2px上,其中O为坐标原点,若三角形ABC的垂心恰好是抛物线的焦点,求三角形ABC的面

看等腰三角形:h=(3/2)(p/2)=3p/4,y=±√[2p(3p/4)]底=2√[2p(3p/4)]S⊿ABC=(3p/4)√[2p(3p/4)]=(3√6/8)p^(3/2)

已知在三棱锥S-ABC中,SA,SB,SC,两两互相垂直O点为底面三角形ABC的垂心,求证SO垂直平面ABC

证明,设DEF,分别S在是BC,CA,AB上的垂足,D'是AO与BC的焦点很容易有BD^2-CD^2=SB^2-SC^2BD-CD=(SB^2-SC^2)/BCBD'^2-CD'^2=AB^2-AC^

如图圆O是三角形ABC的内切圆,且圆O的半径为5,三角形ABC的周长为40,求三角形的面积

如图,三角形面积为:0.5*((x+z)*5+(x+y)*5+(z+y)*5)=2.5*(2*(x+y+z))周长为:2*(x+y+z)=40所以面积等于40*2.5=100

如图圆O是三角形ABC的内切圆,且圆O的半径为5.,三角形ABC的周长为40,求三角形ABC的面积?

连接OA,OB,OC三角形ABC的面积等于OAB,OAC,OBC三个三角形的面积之和S=S1+S2+S3=1/2*OD*(AB+BC+AC)=1/2*5*40=100

如何证明设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL

字母可能有不同,是从我空间里复制出来的.证明:作ABC的外接圆,直径CN,连接AN、BN因为CN是直径所以NB⊥BC,NA⊥AC因为AB⊥BC,BE⊥AC所以NB//AB,NA//BE所以四边形ANB

O为三角形ABC一点.且满足向量OA+向量OB+向量OC=.则点O为该三角形的什么心

O为三角形ABC所在平面内一点,OA+OB+OC=0点O是三角形ABC的重心(OA,OB,OC,0为向量)取BC中点D,连结并延长OD至E,使DE=OD,则四边形BOCE是平行四边形∴向量OB=向量C

已知三角形ABC的垂心为H,平面内一点O满足,向量OH=向量OA+向量OB+向量OC,求证:点O为三角形ABC的外心

用同一法若点O为三角形ABC的外心,则向量OH=向量OA+向量OB+向量OC如果存在一点Q,使向量QH=向量QA+向量QB+向量QC,那么在AB、BC、CA方向上Q、O位置均相同

三角形ABC和一点O,满足向量:OA2+BC2=OB2+CA2=OC2+AB2(以上皆为平方,向量方向为字母顺序),求点

O是三角形的重心,由OA2+BC2=OB2+CA2→OA2+BC2-OB2-CA2=0→2OC乘以AB=0→OC⊥AB,同理推出OA⊥BC,OB⊥CA,所以点O是三角形的重心