o为三角形ABC的垂心,OA 2OB 3OC=0,A,的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:11:05
延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,
证明:向量AB=向量PB-向量PA,向量CO=向量PO-向量PC依题得:向量PO*向量AB=0,即向量PO*(向量PB-向量PA)=0,向量PO*向量PB-向量PO*向量PA=0,所以向量AB*向量C
OA*OB=OB*OC0=OB*(OA-OC)=OB*CA,OB⊥CA同理OA⊥BCOC⊥ABO是⊿ABC的垂心.请留意,由此可以得到三角形三个高交于一点的一个向量证明方法,楼主不妨试试.(即从OA⊥
1)向量OA*OB=-|OA|*|OB|*cos(∠1+∠2)向量OB*OC=-|OC|*|OB|*cos(∠3+∠4)向量OC*OA=-|OC|*|OA|*cos(∠5+∠6)∵∠1+∠5+∠6=∠
向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线
取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向
题目没说是等边三角形,如果是的话,那么很好算.边长为6,则正三角形的高等于3根号3,三条中线的交点是外接圆的圆心,它到每个三角形的顶点距离等于中线长的三分之二.所以,用3根号3乘以三分之二,得2根号3
三角形ABC的面积:三角形OBC的面积=3:1再问:麻烦你写出详细的过程,好吗?再答:设BC的中点为D,在三角形ABC中,作BC上的高AH,在三角形OBC中,作BC上的高OH'。三角形ADH相似三角形
1.O为外心,即O为三角形ABC的外接圆圆心,有
连接AO,BO,设AO,BO延长线(或是其本身)分别交BC,AC于点D,E,连接PD,PE∵PO⊥面ABC∴PO⊥BC,PO⊥AC又∵PA⊥BC,PB⊥AC∴BC⊥面PAD(O在面PAD上),AC⊥面
看等腰三角形:h=(3/2)(p/2)=3p/4,y=±√[2p(3p/4)]底=2√[2p(3p/4)]S⊿ABC=(3p/4)√[2p(3p/4)]=(3√6/8)p^(3/2)
证明,设DEF,分别S在是BC,CA,AB上的垂足,D'是AO与BC的焦点很容易有BD^2-CD^2=SB^2-SC^2BD-CD=(SB^2-SC^2)/BCBD'^2-CD'^2=AB^2-AC^
如图,三角形面积为:0.5*((x+z)*5+(x+y)*5+(z+y)*5)=2.5*(2*(x+y+z))周长为:2*(x+y+z)=40所以面积等于40*2.5=100
连接OA,OB,OC三角形ABC的面积等于OAB,OAC,OBC三个三角形的面积之和S=S1+S2+S3=1/2*OD*(AB+BC+AC)=1/2*5*40=100
字母可能有不同,是从我空间里复制出来的.证明:作ABC的外接圆,直径CN,连接AN、BN因为CN是直径所以NB⊥BC,NA⊥AC因为AB⊥BC,BE⊥AC所以NB//AB,NA//BE所以四边形ANB
O为三角形ABC所在平面内一点,OA+OB+OC=0点O是三角形ABC的重心(OA,OB,OC,0为向量)取BC中点D,连结并延长OD至E,使DE=OD,则四边形BOCE是平行四边形∴向量OB=向量C
用同一法若点O为三角形ABC的外心,则向量OH=向量OA+向量OB+向量OC如果存在一点Q,使向量QH=向量QA+向量QB+向量QC,那么在AB、BC、CA方向上Q、O位置均相同
百度百科“三角形的四心”,有详尽的相关证明
O是三角形的重心,由OA2+BC2=OB2+CA2→OA2+BC2-OB2-CA2=0→2OC乘以AB=0→OC⊥AB,同理推出OA⊥BC,OB⊥CA,所以点O是三角形的重心