O是ABC的垂心,OA 2OB 3OC=0,求A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:01:50
延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,
证明:如图所示,设D为BC边的中点,则OB+OC=2OD.∵O是△ABC的重心,∴OA=−2OD,∴OA+OB+OC=0.
三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C
取AB中点为M,CM是AB边上的中线,1/2(向量OA+向量OB)=向量OMOP=1/3(1/2向量OA+1/2向量OB+2向量OC)=1/3(向量OM+2向量OC)=1/3向量OM+2/3*向量OC
证明:如图,连结CO并延长交AB于D,连结PO,∵PC⊥PA,PC⊥PB,PA∩PB=P,∴PC⊥平面PAB,又AB平面PAB,∴PC⊥AB,∵O是P在平面ABC内的射影,∴PO⊥平面ABC,又OC是
证明:(1)连结PO,连结AO并延长交BC于D,连结PD∵PO⊥平面ABC∴PO⊥BC∵O是△ABC的垂心∴AD⊥BC∵BC⊥ADBC⊥PO∴BC⊥平面APD∴BC⊥AP∵AP⊥PB∴AP⊥平面PBC
OA*OB=OB*OCOB*(OA-OC)=0OB*CA=0BO⊥CA同理CO⊥BAO是△ABC的(垂)心
题目条件不全吧反证一下假设△ABC垂心为O,PO长为X时,满足条件PA,PB,PC两两垂直,此时角APC,APB,BPC为直角由题目条件没有限制,可令PO长为2X,此时角APC,APB,BPC必小于P
证明:∵O是△ABC的垂心,∴BC⊥AE.∵PA⊥平面ABC,根据三垂线定理得BC⊥PE.∴BC⊥平面PAE.∵Q是△PBC的垂心,故Q在PE上,则OQ⊂平面PAE,∴OQ⊥BC.∵PA⊥平面ABC,
连接AO,BO,设AO,BO延长线(或是其本身)分别交BC,AC于点D,E,连接PD,PE∵PO⊥面ABC∴PO⊥BC,PO⊥AC又∵PA⊥BC,PB⊥AC∴BC⊥面PAD(O在面PAD上),AC⊥面
看等腰三角形:h=(3/2)(p/2)=3p/4,y=±√[2p(3p/4)]底=2√[2p(3p/4)]S⊿ABC=(3p/4)√[2p(3p/4)]=(3√6/8)p^(3/2)
过点O作OG垂点O是三角形ABC三条角
(1):∵PA⊥PB,PA⊥PC∴PA⊥PBC∴PA⊥BC∵O是三角形ABC的垂心∴OA⊥BC,∴BC⊥AO同理AC⊥BO,AB⊥CO,∴OA⊥ABC得出结论(2):延伸AO交BC与D,则AD⊥BC由
再答:不容易啊。找了张卫生纸给你写的。求采纳再问:enen再答:麻烦采纳啊亲再问:还有再答:先采纳。。咱一道一道来。做人要厚道再问:
因为po垂直底面,所以po垂直bc因为ao垂直bc,所以bc垂直ao,op确定的平面所以pa垂直bc
百度百科“三角形的四心”,有详尽的相关证明
90°因为O是垂心,AP射影AO⊥BC,PD⊥平面α,PD⊥BC,BC⊥平面AOB,∴BC⊥PA
这个应该不是什么定理,但证明很简单HAC=HBC=CBE就是倒角和弧的对应关系
证明:(1)在Rt△ABD中,∠ADB=90°,∴∠BAD=90°-∠ABC,又∵∠AOC=2∠B,∠OAC=∠OCA,∴∠OAC=12(180°-∠AOC)=90°-∠B,∴∠BAD=∠OAC.(2
X+Y=2/3.取点D,使四边形ABDC为平行四边形,延长AO,交BC于点E,交CD于点F.在AB边上取点G,使AC//GF.由题设及作法知,AF=AC+1/2AB.再由几何知识得AO:OE:EF=4