逆矩阵 (A B)(A-B)=A^2-B^2的条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:08:00
逆矩阵 (A B)(A-B)=A^2-B^2的条件
大学线性代数 AB为n阶方阵,|A|=2,|B|=3,|A-B|=6,则|A逆矩阵-B逆矩阵|=?求详解

B(A逆矩阵-B逆矩阵)A=B-A,两边取行列式即可再问:懂了。

线性代数 矩阵证明 |AB|= |A| |B|怎么证明

我只能告诉你大概步骤了:构造一个(AB都为n阶)|AO||-EB|的分块行列式,然后通过行列式转换可以转换为:(-1)^n|-EO||AC|(其中C=AB)利用分块行列式的乘法就可以证明|AB|=|A

矩阵AB=0,则矩阵A,矩阵B的关系

显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的

矩阵AB=0,其中矩阵A可逆,能推出矩阵B=0吗?

是的,由矩阵A可逆这个条件可以推出矩阵B=0AB=0,现在A可逆,那么在等式的两边同时左乘A的逆即A^(-1)故A^(-1)AB=0,显然A^(-1)A=E(单位矩阵)所以B=0

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA

AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB

矩阵 AB+E=A^2+B 求 B= ,

AB+E=A^2+BSO:AB-B=A^2-ESO:(A-E)B=(A-E)(A+E)但是你没说A=E?所以假如A=E很多解假如|A-E|不等于0那么B=A+E

A,B是n阶矩阵,且A是满秩矩阵,为什么R(AB)=R(B)?

A可逆,可表示为初等矩阵的乘积A=P1...PsP1,PsB相当于对B做初等行变换而初等变换不改变矩阵的秩所以R(AB)=R(B)

设矩阵A=221,110,-123,求矩阵B,使得A+2B=AB

我认为这么做由A+2B=ABA=2B-ABA=(2E-A)BA=221110-1232E-A=0-2-1-1101-2-1则2E-A的逆为-101-1111-2-2B=(2E-A)的逆*A=-302-

如果有AB两个矩阵,A*A=B*B,那么A=B对吗

不是的.A*A=B*B只能说明|A|=|B|,不能说明A=B

已知矩阵B和AB求A的逆矩阵

令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^

A,B都是n阶矩阵,满足AB=E,求证矩阵A可逆,且A的逆矩阵等于B

detA·detB=det(AB)=det(E)=1所以det(A)≠0所以A可逆A·B=E设B'·A=E则B'=B'·E=B'·(A·B)=(B'·A)·B=E·B=B所以AB=BA=E所以A的逆矩

设AB=0,A是满秩矩阵 则B=

因为A是满秩矩阵,所以A^(-1)存在AB=0两边同时左乘A^(-1)得A^(-1)AB=A^(-1)0得B=0

A,B是正定矩阵 AB=BA 证明AB也为正定矩阵

实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定

求矩阵B使得AB-A=2B,矩阵A如图所示.

AB-A=2B---->AB-2EB=A---->(A-2E)B=A-->B=(A-2E)^(-1)*A

分块矩阵问题.矩阵 (O AB O) 的逆矩阵怎么求?A是n阶矩阵 B是s阶矩阵 A B都可逆

第一行乘以矩阵A加到第二行,行列式变成了一个上三角形形|-BI||0-2B逆|,所以原式=|-B|×|-2B逆|=(-1)^n×|B|×(-2)^n×|B逆|=2^n.请采纳.再问:没看懂。答案是(O

逆矩阵定义问题对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则说矩阵A是可逆的,并把B矩阵称为A的逆矩阵.如果

可以.因为AB=E,所以|A||B|=|AB|=|E|=1.所以A的行列式不等于0,故A可逆.且A^-1=A^-1E=A^-1AB=B.满意请采纳^_^

当矩阵A,B是可逆矩阵时,用定义验证B-1A-1是AB的逆矩阵.

AA-1=A-1A=EBB-1=B-1B=EB-1A-1AB=B-1(A-1A)B=E再问:没看懂,能解释详细一点儿吗?再答:B-1A-1AB=B-1(A-1A)B=B-1B=E再问:为什么要把B-1

证明矩阵中 |AB|=|A|*|B|

证明方法:左边按公式展开!右边先用行列式公式计算,然后进行组合,会发现和左边对应相等.不过书写太麻烦了!