p是三角形abc外一点pa垂直平面abc 平面pac垂直平面pbc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:25:19
p是三角形abc外一点pa垂直平面abc 平面pac垂直平面pbc
P是三角形ABC所在平面外一点,且PA垂直平面ABC,若O、Q分别是三角形ABC和三角形PBC的垂心,

延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,

P是三角形ABC外一点,O是P在平面上的射影,PA,PB,PC两两垂直,则O是ABC垂心,怎么证

PA⊥PB,PA⊥PC,且PB、PC交于P所以PA⊥平面PBC又因为BC在平面PBC内,所以PA⊥BC由于OA是PA在平面ABC内的射影,根据三垂线逆定理可得:BC⊥OA.同理,AB⊥OC,AC⊥OB

P是三角形ABC所在平面外的一点,PA与PB垂直,PB与PC垂直,PC与PA垂直,H是三角形ABC的垂心.求证:PH⊥平

PA垂直PB,PA垂直PC,PB、PC交于点P,所以PA垂直平面PBC因为BC在平面PBC中,所以PA垂直BC延长AH交于BC于D,因为H为三角形ABC的垂心,所以AD垂直BC因为PA垂直BC,AD垂

已知P为三角形ABC外一点,PA,PB,PC两两垂直,PA=PB=PC=a,求点P到面ABC的距离

因为PA,PB,PC两两垂直,PA=PB=PC=a所以三角形ABC是等边三角形,并且P在平面内的射影是三角形的重心设距离为X则三角形的边长为根号下2倍的aAH^2+PH^2=PA^2X^2+2/3a^

已知P是三角形ABC所在面外一点,PA=PB=PC,角BAC=90°,求证:平面PBC垂直平面ABC

D是BC的中点那么PD垂直于平面ABC所以平面PBC垂直平面ABC

O是三角形ABC的外心,P是三角形ABC所在平面外一点,且PA=PB=PC,求证:PO垂直于面ABC

假设不是直角则PO不垂直于面ABC,则作P在面上的射影点Q,根据∠AOP=∠BOP=∠COP可以证明∠AOQ=∠BOQ=∠COQ.但这是不可能的.所以三个角都是直角.

过三角形ABC所在平面外一点P,作PO垂直平面,连接PA,PB,PC,PA垂直PB,PB垂直PC,PC垂直PA,则O是三

答:O是△ABC的垂心证明:连接AO并延长交BC于D,连接PD∵PO⊥平面ABCBC在平面ABC内∴PO⊥BC又∵PA⊥PC,PA⊥PB∴PA⊥平面PBC又∵BC在平面PBC内∴PA⊥BC∴BC⊥平面

P是三角形ABC所在平面外一点,角ABC是直角,PA=PB=PC,求证:平面PAC垂直于平面ABC

作PQ⊥面ABC,垂足为Q,∵PA=PB=PC∴AQ=BQ=CQ又△ABC是直角三角形∴点Q是Rt△ABC的外心,所以点Q在AC上又PA=PC∴PQ⊥AC,AC⊥BQ所以平面PAC垂直于平面ABC

P是三角形ABC所在平面外一点,PA,PB,PC两两垂直,PH垂直于平面ABC,H是垂足.】

仅已知PB=PC=b,不足以求出P到平面ABC的距离.证明1.因为PA、PB、PC两两垂直,所以有AB²=PA²+PB²----(1)BC²=PB²+

P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1

设PA=a,PB=b,PC=c,则(s1)^2+(s2)^2+(s3)^2=(1/4)[(a^2)(b^2)+(b^2)(c^2)+(c^2)(a^2)](2)AB^2=a^2+b^2,BC^2=b^

P是三角形ABC所在平面外的一点,过P作PO垂直,垂足为O,连接PA,PB,PC,

2.若PA=PB=PC,则O是△ABC的__心要具体过程外心,外接圆圆心,证明方法做出立体图形PO大家都一样共用的,又PA=PB=PC,所以根据勾股定理另外

已知P是三角形ABC所在平面外一点,PA垂直于BC,PB垂直于AC,求证:PC垂直于AB

分别作三角形ABC各边垂线AWBKCM交于一点设为Z点连PZPA⊥BCAZ⊥BC=>BC⊥平面PAZ所以BC⊥PZ同理PB⊥ACBZ⊥AC所以AC⊥平面PZB所以AC⊥PZ所以PZ⊥平面ABC所以PZ

已知p是三角形abc所在平面外一点,pa垂直平面abc,二面角a..pb..c是直二面角.求证:ab垂直bc.

过点A作AD⊥PB于D点∵A-PB-C是直二面角,∴平面PAB⊥平面PCB∵AD属于平面PAB∴AD⊥平面PCB∵BC属于平面PCB∴BC⊥AD∵PA⊥平面ABC,BC属于平面ABC∴PA⊥BC∴BC

已知P是三角形ABC所在平面外一点,PA垂直与PC,PB垂直与PC,PA垂直与PB

PA垂直与PC,PB垂直与PC==》PC⊥平面PAB,所以PC⊥AB又PH⊥平面ABC所以CH⊥AB;同理AH⊥BC,BH⊥CA;所以P在面ABC上的射影H是三角形ABC的垂心

已知P是三角形ABC所在平面外一点 PA,PB,PC两两垂直,O是三角形ABC的垂心.看好问题

(1):∵PA⊥PB,PA⊥PC∴PA⊥PBC∴PA⊥BC∵O是三角形ABC的垂心∴OA⊥BC,∴BC⊥AO同理AC⊥BO,AB⊥CO,∴OA⊥ABC得出结论(2):延伸AO交BC与D,则AD⊥BC由

已知P为三角形ABC所在平面外一点,O为P在平面ABC上的射影,若PA垂直BC,PB垂直AC,则O是三角形ABC的

垂心证:已知PA垂直BC,且PO是平面ABC的垂线,即AO是PA在平面ABC内的射影,所以由三垂线定理逆定理得:AO垂直BC,同理,BO垂直AC.综上,点o为垂线焦点,即垂心.

P是三角形ABC所在平面外一点,PA、PB、PC两两相互垂直,PH垂直平面于H,求证1/PA2+1/PB2+1/PC2=

由题意知PC、PA、PB分别垂直于PAB、PBC、PAC三个平面.连接CH,且延长交AB于D,连接PD.那么有题意知PH⊥CH,且PC⊥PD,CD和PD均⊥AB.那么有PH^2/PC^2=sin^2(

P是三角形ABC外的一点,PA,PB,PC相互垂直,H是三角形ABC的重心.求证PH垂直于面ABC

因为相互垂直,所以p点射影M则为三角形的垂心.再证明MH垂直于平面ABC,即可得到PH垂直于平面ABC.这只是思路,写到纸上靠你自己了