sinπ^n 3^n敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:01:58
数学问题不易从表面判断难度,自己想的题搞不好就和世界难题相关.好在你这道题目本身还算简单.由1/π是无理数,可用抽屉原理证明:存在无穷多组正整数m,n,满足|n/π-m|对满足上述要求的n,可知:|n
很简单(sinn)/n^2≤1/n^2因为|sinn|≤1∑1/n^2绝对收敛,所以原级数也绝对收敛
1)、如果原题是数列an=n∧3+Xn(n属于N),且满足a1(n-1)∧3-n∧3所以当原题为数列an=n∧3+Xn(n属于N)时x取值范围:x>1∧3-2∧3=-72)、如果原题是数列an=3*n
老弟,这是基本的正项级数比较敛散法的运用,你需要加油啊.通项取绝对值,然后容易知道通项sin(π/n+1)/π^(n+1)
与∑1/n比较用比较准则再问:sin派/n与1/n有什么关系?再答:你们学过比较准则吗!sinπ和1没有关系但是肯定有大小关系再问:是sin(派/n)啊再答:是的楼主一定要采纳啊祝你开心!
要使(n3+100)÷(n+10)=n3+100n+10=(n+10)(n−10)2−900n+10=(n-10)2-900n+10为整数,必须900能整除n+10,则n的最大值为890.
lim(n→∞)(n+1)(n+2)(n+3)/(5n³+n)=lim(n→∞)(1+1/n)(1+2/n)(1+3/n)/(5+1/n²).分子分母同时除以n³=1/5
这个显然是正项级数求极限n→∞lim(1/n-sin(1/n))/(1/n³)=1/6≠0所以,原级数和1/n³有想同敛散性所以原级数收敛
因为当n趋于无穷时,π/2^n趋于0所以根据等价无穷小的代换:sint〜t(t—>0),有sin[π/(2^n)]〜π/(2^n)(n—>无穷)所以[∞∑n=1]sin[π
该级数实为1,0,-1/3,0,1/5,0,-1/7,0,……,1/4t,0,-1/(4t+2),0,……我们将1/4t,0,-1/(4t+2),0的和组成一项有an=1/4n-1/(4n+2)=1/
lim(n→∞)(3n³-2n+1)/(8-n³)=lim(n→∞)(3-2/n²+1/n³)/(8/n³-1)=-3
考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下
当x=π时,sinmx=sinnx=sin0=0所以,原式=limsin(mπ-mx)/sin(nπ-nx)=lim(mπ-mx)/(nπ-nx)【等价无穷小代换】=(m/n)·lim(π-x)/(π
∑(n=1,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=1,∝)2^nsin(π/3^n)与∑(n=1,∝)2^n(π/3^n)=∑(n=1,∝)π(2/
sinx-2/Pi*x这个函数,在0和Pi/2都等于0,并且在这个区间上是凹函数,所以大于等于0.
n=3n^2+n^3=9+27=36=6^2
n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所
sin(n+1/n)π=sin(π+π/n)=-sin(π/n)即只需要判断-sin(π/n)的收敛性而limsinx/x=1【x趋向于0时,在这里就是sin(π/n)与(π/n)的极限是1,即是同阶
数列收敛,极限为0函数不收敛
(n3-n+5)/(n2+1)=[(n^3+n)-(2n-5)]/(n^2+1)=n-(2n-5)/(n^2+1)所以(2n-5)/(n^2+1)必须为整数.=>|2n-5|>n^2+1或者2n-5=