sn=5n--2-3n 4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:02:25
sn=5n--2-3n 4
数列an的前n项和Sn满足Sn=3n+1,n≤5,Sn=n^2,n≥6,求通项公式

分析:由于对于数列的n值有不同范围取值,对应不同的求和公式,可知数列为分段数列,需要对不同范围的n值进行讨论,方可求得数列的通项公式;当n=1时,a1=S1=3+1=4;当2≤n≤5时,an=Sn-S

=TEXT(--(19*(LEN(N4)=15)&MID(N4,7,6+(LEN(N4)=18)*2)),"####-#

这个你一段段用F9就可以了啊

数列an的前n项和Sn满足:Sn=2an-3n

S1=A1=2A1-3故A1=3而An=Sn-S(n-1)=(2An-3n)-[2A(n-1)-3(n-1)]=2An-2A(n-1)-3故An=2A(n-1)+3故An+3=2[A(n-1)+3]即

数列{an}的前n项和Sn满足:Sn=2an-3n(n属于N*)

我就说第二问吧.若{an}中存在三项,它们可以构成等差数列,则有2an=(an-1)+(an+1)即2*(3*2^n-3)=3*2^(n+1)-3+3*2^(n-1)-3,3*2^(n+1)-6=3*

已知集合M={1,2,3,m},N={4,7,n4,n2+3n}(m、n∈N),映射f:y→3x+1是从M到N的一个函数

由映射f:y→3x+1可得n4=103m+1=n2+3n或n4=3m+1n2+3n=10∵m,n∈N∴n=2,m=5∴m-n=3故选:B

已知数列{an}的前n项和为Sn=3n^2-5n/2(n属于N*)

(1)当n=1时a(1)=S(1)=3-5/2=1/2当n≥2时a(n)=S(n)-S(n-1)=3n^2-5n/2-3(n-1)^2+5(n-1)/2=6n-11/2其中n=1是也符合上式,所以a(

=SUMIF($N$3:$IV$3,"*件数*",N4:IV4) 在电脑上怎么操作这个公式

SUMIF($N$3:$IV$3,"*件数*",N4:IV4)①在你想放置结果的单元格中输入:=SUMIF(②用鼠标选取区域:[$N$3:$IV$3],注意选完后一定要加逗号[,],CapsLock要

已知an=(2n+1)*3^n,求Sn

an=(2n+1)*3^na1=3*3^1a2=5*3^2a3=7*3^3.an=(2n+1)*3^nSn=3*3^1+5*3^2+7*3^3+.(2n+1)*3^n3Sn=3*3^2+5*3^3+7

Sn=1*2+3*2^2+5*2^3+……+(2n-1)*2^n 求Sn=

Sn=1*2+3*2^2+5*2^3+……+(2n-1)*2^n2Sn=1*2^2+3*2^3+...+(2n-1)*2^(n+1)相减得-Sn=1*2+2*2^2+2*2^3+..+2*2^n-(2

数列{an}的前n项为Sn,Sn=2an-3n(n∈N*).

(1)证明:由Sn=2an-3n,得Sn-1=2an-1-3(n-1)(n≥2),则有an=2an-2an-1-3an+3=2(an-1+3)(n≥2),∵a1=S1=2a1-3,∴a1=3,∴a1+

数列Sn=(3n+1)/2-(n/2)an

Sn=(3n+1)/2-(n/2)an当n=1时,a1=4/3=1+1/3=1+1/[1*(1+2)]当n=2时,a2=13/12=1+1/[2*(1+2+3)当n=3时,a3=31/30=1+1/[

设Sn=-1+3-5+7-…+(-1)n(2n-1),则Sn=______.

当n是偶数时,Sn=(-1+3)+(-5+7)+…+[-(2n-3)+(2n-1)]=2+2+…+2(共n2项)=2×n2=n.当n是奇数时,Sn=(-1+3)+(-5+7)+…+[-(2n-5)+(

(1).Sn=1+2×3+3×7...n(2^n-1),求Sn.

(1).Sn=1+2×3+3×7……n(2^n-1),求Sn.Sn=1×(2^1-1)+2×(2^2-1)+3×(2^3-1)+……+n(2^n-1)=(1×2^1+2×2^2+3×2^3+……+n×

已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn

【方法1:强行展开a(n)表达式】1+2+……+n=n(n+1)/21^2+2^2+……+n^2=n(n+1)(2n+1)/61^3+2^3+……+n^3=n^2(n+1)^2/41^4+2^4+……

Sn=3+2^n Sn-1=3+2^(n-1).则Sn-Sn-1=?

 再问: 再问:那个划横线的答案是不是错了再答:我觉得是

已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列

Sn+an=n^2+3n+5/2①当n=1时,S1+a1=1^2+3*1+5/2=13/2而S1=a1,所以2a1=13/2,即a1=13/4,所以a1-1=9/4;又S(n-1)+a(n-1)=(n

Sn=1x2+3x2^2+5x2^3+…+(2n-1)x2^n sn=2sn-sn

2sn=2x2+3x2^2x2+5x2^3x2(2n-1)x2^nx2sn=2sn-sn=2x2^2+2x2^3+…+2x2^n-1x2

已知Sn=2+5n+8n^2+…+(3n-1)n^n-1(n∈N*)求Sn

Sn=2+5n+8n^2+…+(3n-1)n^n-1nSn=2n+5n^2+…+(3n-4)n^(n-1)+(3n-1)n^nSn-nSn=2+3n+3n^2+…+3n^(n-1)-(3n-1)n^n

Sn=2An+3n-12

(1)An=3(1+2^n)(2)由题知,Sn=2An+3n-12=6(2^n-1)+3nBn=(An-3)/(Sn-3n)(A(n+1)-6)=(3*2^n)/(6(2^n-1))(3(2^(n+1

已知m-n=-5,m2+n2=13,那么m4+n4=______.

∵m-n=-5,m2+n2=13,∴(m-n)2=m2+n2-2mn,∴mn=-6,又∵(m2+n2)2=m4+n4+2m2n2,故m4+n4=132-2×36=97.故答案为:97.