X~Y(0,1) 则随机变量Y=ex的概率密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:16:57
X~Y(0,1) 则随机变量Y=ex的概率密度函数
已知随机变量X,Y相互独立,N(1,9),Y在区间[0,4]上服从均匀分布,则E(X)=?,D(Y)=?,D(X+3Y)

1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12

设随机变量x~N(0,1),N(1,2),且x,y相互独立,则x-2y=?

首先X-2Y还是正态分布而E(X-2Y)=E(X)-2E(Y)=0-2=-2D(X-2Y)=D(X)+(-2)²D(Y)=1+4×2=9所以X-2YN(-2,9)

二维随机变量X,Y服从(0,1)均匀分布,求Z=MAX(X,Y)

F(X)=(X-0)/(1-0)=x/1=xF(Y)=(Y-0)/(1-0)=y/1=y以上是两个均匀分布的分布函数F(Z)=F(MAX(X,Y))=1-(1-F(X))(1-F(Y))=1-(1-X

设随机变量x ,y x相互独立,且x~u[0,3],e(1/3),则x,y 的联合概率密度函数f(x,y)=?

X服从均匀分布,f(x)=1/3,0≤x≤3Y服从指数分布,f(y)=1/3*e^(-y/3),y≥0X,Y相互独立,f(x,y)=f(x)f(y)=1/9*e^(-y/3),0≤x≤3,y≥0再问:

设随机变量x~N(0,1),y=2x+1,则y~N( ),求详解,

用正态分布特性计算.经济数学团队帮你解答.请及时评价.

设随机变量X,Y都服从区间【0,1】上的均匀分布,则E(X=Y)=?

随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=

由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0

随机变量X~N(0,1),求下列随机变量Y=X^2的概率密度函数

思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=

随机变量x,y在g=(0

经验:看题目中有无等号!和题目保持一致就OK了!

设随机变量X~N(0.1),Y=3x-1,则Y服从什么

N(0,1)表示随机变量X服从期望为0,方差为1的正态分布,即标准正态分布其中N是NormalDistribution的缩写,即正态分布.正态分布的概率密度函数为f(x)=]1/(√2π)σ]*exp

概率论的题~1、若随机变量X~N(0,1) ,Y=X^2 ,则 cov(x,y)=

1、cov(x,y)=E(xy)-E(x)E(y)=E(x³)-E(x)E(x²)=02、符号打不出来,总之,就是先求出f(xy),也就是联合密度,然后把min(x,y)乘以联合密

二维随机变量(x,y)~N(0,0,1,1,1/2) 则z=x-2y服从?

根据二维正态分布的性质知:x,y均服从N(0,1),根据正态分布的线性组合还是正态分布,知z服从正态分布下面重点求z的期望与方差E(z)=E(x-2y)=E(x)-2E(y)=0D(z)=D(x-2y

设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...

X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,

某随机变量的概率分布如下表,其中x>0,y>0,随机变量的方差D=1/2,则x+y=?

0.75再问:如何计算的?再答:平方我的用@这个符号看好。【1-2】@*X+【2-2】@*Y+【3-2】@*X=0.5{即二分一}得X=0.25.因为X+X+Y=1所以Y=0.5。X+Y=0.75再答