x根号ax b的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:24:17
先进行换元,令根号x=t再答:
原式=∫(0→1)√(1-(x-1)^2)d(x-1)令x-1=sint则原式=∫(-π/2→0)cost*costdt=∫(-π/2→0)(cos(2t)+1)/2dt=1/4∫(-π/2→0)co
积分(1-根号x^3)dx方法:变量替换,设:根号x=t,这样,dx=d(t^2)=2tdt,然后就是:积分(1-t^3)*2tdt,很容易的.积分根号[x(x-2)]dx=积分根号[(x-1)^2-
a×(b-c)
二分之根号2乘以arctan[(x-1)/根号(2x)]+四分之根号2乘以lnabs[(x+根号2x+1)/(x-2x+1)]+C
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
再问:非常感谢您的指点。
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
令x=asin(t)就做出来了...答案是-根号下a平方-x平方再问:能详细写下积分过程吗?谢谢。再答:换元积分,微积分里有的~
原式=∫根号(4-(x+1)²)dx,只要令x+1=2cost,则x=2cost-1,dx=-2sintdt,故原积分式就化成∫(2sint)*(-2sint)dt,这样就容易积分了,最后把
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
既要换元,又要分部,还涉循环积分.初学者有难度.
考试时间紧迫,快点写上吧!如果(1+x)在根号外面:∫1/√x(1+x)dx设√x=t,则x=t²,dx=2tdt所以:原式=2∫dt/(1+t²)=2arctant+C=2arc
其中的∫(secθ)³dθ,请参见下图:其中的∫(secθ)dθ,请参见下图:或:
结果及过程如下图所示:不明白的话给我留言
设x=sint,则dx=cost*dt∫x^2/√(1-x^2)*dx=∫(sint)^2*(cost)*dt/cost=∫(sint)^2*dt=1/2*∫2(sint)^2*dt=1/2*∫(1-