y=x×e的1 次方的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:00:22
用等价无穷小原式=lim(x→0)(e^(x^2)cosx)/x+1=lim(x→0)1/1=1再问:分母为arcsin(x+1)啊再答:等价无穷小的代换当x→0时arcsinx等价于x所以arcsi
原式=e^(xln(1+1/x)).我们只需求limxln(1+1/x)=limln(1+1/x)/(1/x)接下来用洛必达法则.等于上下分别求导再求极限.结果为0.所以原式极限为1.
Y=e^x/xy'=(xe^x-e^x)/xx=1代入得y'(1)=0第二题不太清楚你后面的是什么意思,1/3X/3X就是这一个再问:极限limX趋向0e^x-1是分子,3x是分母我多打了个再答:那这
e^(x+y)-e^x+[e^(x+y)+e^y]•dy/dx=0[e^(x+y)+e^y]•dy/dx=e^x-e^(x+y)=e^x•(1-e^y)dy/dx=
用对数法:先取对数,在用罗必塔法则,算成是1,所以不取对数是是e.
x->0+原式=(0+1)/(0+1)e^(+∞)=+∞x->0-原式=(0+1)/(0+1)e^(-∞)=0
移项[exp(x+y)-exp(x)]dx=-[exp(x+y)+exp(y)]dy化简得{exp(x)/[1+exp(x)]}dx={exp(y)/[1-exp(y)]}dy积分得ln[1+exp(
正无穷,三次的罗比他法则
方法一:L'Hospital法则lim(x→0)[e^(2x)-1]/x=lim(x→0)2e^(2x)=2方法二:等价无穷小替换e^x-1~x∴e^(2x)-1~2x∴lim(x→0)[e^(2x)
(e^x-1)/xx->0时分子分母都趋近于0可对分子分母求导=e^x|x->0=e^0=1
根据复合函数的求导法则,将3x-1看作中间变量,(e^u)'=e^u.所以y'=(3x-1)'*e^(3x-1)y'=3e^(3x-1)
y=e^(x+1);y^n=e^n(x+1)(x→1)lim(x^3-2x+1)/(X^2-1)=1∫(1+xe^5x)/xdx=∫1/xdx+∫e^(5x)dx=lnx+(1/5)e^5x+C
(x-1)e^(1-x)再答:不对,应该是-e^(1-x)
lim[x→0](e^x-1)/x=lim[x→0]e^x/1(洛必塔法则)=e^0/1=1
lim【x→0】(e^3x-e^x)ln(1+x)/(1-cox)=lim【x→0】[】(e^3x-e^x)]x/(x²/2)=2lim【x→0】[(e^3x-e^x)]/x=2lim【x→
当X-->∞,e的X分之一次方-->1,X分之e的X分之一次方-->0
lim(x->0)(e^3-e^(-x)-4x)/(1-cosx)=lim(x->0)[e^(-x)-4)/sinx=(1-4)/1=-3
lim(x→∞)[(x+1)/(x-2)]^x=lim(x→∞)[1+3/(x-2)]^x=lim(x→∞)[1+3/(x-2)]^{[(x-2)/3]*[3x/(x-2)]}=lim(x→∞)e^[