z=f(x,xy)二阶偏导
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:29:50
dz/dx=y(yf1'+2f2')dz/dy=f(xy,2x+y)++y(xf1'+f2')da/dxdy=(yf1'+2f2')+y【f1'+y(xf1'+f2')+2(xf1'+f2')】=2y
dz=(∂z/∂x)dx+(∂z/∂y)dyxy+yz+xz-1=0设g(x,y,z)=xy+yz+xz-1 ∂g/∂x=y+
设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/
(太麻烦拉,给点分啊!)设v=x*x-y*y,u=exp{xy}那么dv/dx=2x(这里应该用偏导符号,代替一下),dv/dy=2y,du/dx=y*exp{xy},du/dy=x*exp{xy}那
e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe
1、由单变元的微分中值定理,有f(x,y)-f(x0,y)=f'x(c,y)*(x-x0)=0,于是f(x,y)的值只与y有关,故z=f(y).2、由1知道,当f'xy(x,y)=0时,f'y(x,y
对方程两边求全微分得:(e^z-1)dz+y^3dx+3xy^2dy=0(方法和求导类似)移项,有dz=-(y^3dx+3xy^2dy)/(e^z-1)
e^z-z+xy^3=0偏z/偏x:z'e^z-z'+y^3=0y^3=z'(1-e^z)z'=y^3/(1-e^z)偏z/偏y:z'e^z-z'+3xy^2=0z'=3xy^2/(1-e^z)偏z/
令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
你只要X看成是是常数求导就行了,答案就不给你了,自己动手丰衣足食
δz/δx=y^2*f1+(2y-1)*f2δz/δy=2xy*f1+x^2y*2*f2再问:f1和f2是什么?再答:f1表示z对x求导,也可写成fx,(x为下标,在右下角,我不好打,不好意思!)这只
再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:
令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)
x²+y²=(x+y)^2-2xy===>>>f﹙x,y﹚=x^2-2y2xy-3x^2-3y^2=-(x-y)^2-2x^2-2y^2>>有最大值20,无极小值再问:第二题看到不
对于任意的整数x和y,都符合F(xy)除以1997的余数与f(x)f(y)的乘积除以1997的余数相等
再问:你写这些我都明白,可我不明白这个是怎么计算来的?你就帮我把这个计算过程还有方法详细列下。再答:我很好奇你居然都明白,还问这怎么回事!我真搞不懂你到底明白在哪了?我不说的很详细吗?这是复合函数求导
x^2+y^2+z^2+2(xy+yz+zx)=(x+y+z)^2=1由柯西不等式有x^2+y^2+z^2>=(x+y+z)^2/3=1/3所以xy+yz+zx=(1-x^2-y^2-z^2)/2