∑ln n! n!的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:57:34
ln(n)=o(n),即ln(n)远小于n.而n/(n^2+1)~n/n^2=1/n收敛于0,因此ln(n)/(n^2+1)收敛于0.如果你要说的是级数求和的收敛性,也是收敛的.ln(n)=o(n^(
limn^λ(ln(1+n)-lnn)Vn=3limn^(λ-1)(ln(1+1/n)^n)Vn=3limVn/n^(1-λ)=31-λ>1即λ
1.比较法lnn/n!inf}1/(n+1)*lim{n->inf}ln(n+1)/lnn=0*1=0
首先考察它对应的正项级数∑lnn/n当n>3时,lnn/n>1/n级数1/n发散又由于有限项不影响级数的敛散性因此不可能绝对收敛然后考察∑(-1)^n*lnn/n设f(x)=lnx/x可得出f(x)单
根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+
用拉阿伯判别法,证明n(a[n+1]/a[n]-1)<-1,从而级数收敛
(lnn)^3/n^2+1《(lnn)^3/n^2limn^(3/2)(lnn)^3/(n^2)=0,级数(lnn)^3/n^2收敛原级数收敛再问:limn^(3/2)(lnn)^3/(n^2)=0怎
令u_n=1/lnn,则{u_n}单调递减趋于0.所以这个级数是Leibniz型级数,一定收敛.该级数条件收敛,因为∑u_n是不收敛的,这是因为u_n>1/n,而∑1/n发散
/>lim(n->∞)(lnn)^2/n=0f(x)=(lnx)²/xf'(x)=[2lnx-(lnx)²]/x²=lnx(2-lnx)/x²当x
首先可根据级数收敛的必要条件,级数收敛其一般项的极限必为零.反之,一般项的极限不为零级数必不收敛.这样,∑lnn、∑(lnn分之n)一般项的极限为无穷,必不收敛.若一般项的极限为零,则可选择某些正项级
收敛的当n足够大时(lnn)^lnn>n^2因为当n趋于无穷大时limn^2/(lnn)^lnn=lim2n/((lnn)^lnn*(ln(ln(n))/n+1))=lim(2n/(lnn)^lnn)
lnx的增长率永远比不上任何一个幂函数的增长率,所以lnn
因为当n>2时lnn>ln2>0所以(1/n)lnn>1/n>0而1/n是调和级数,分母上次方为1,级数发散所以由比较判别法(1/n)lnn也发散
(lnn/n^2)/(1/n^(3/2))=lnn/n^(1/2),用罗必达法则,该式趋于0.因级数1/n^(3/2)收敛,由比较判别法,原级数收敛.再问:那为什么不可以这样呢?(lnn/n^2)/(
(lnn)^lnn=e^(lnn*lnlnn)=(e^(ln))^(lnlnn)=n^(lnlnn)>n^2,当n>9时,因此通项ann^2这个缩小是什么根据??再答:当n>e^9时,lnn>9,ln
lnn/[n^(4/3)]=lnn^(-1/3)>ln(1/n)发散
用莱布尼兹定理呀,可以看出1/(n-lnn)是单减的,这个你可以用构造函数来看,F(x)=1/(x-lnx)求导F(x)再问:当n趋于无穷时,Un为什么=0啊
设an=[(n+1)^lnn]/(lnn)^n(an)^(1/n)=[(n+1)^(lnn/n)]/(lnn)n趋向于无穷大时(n+1)^(lnn/n)的极限为1因此n趋向于无穷大时,(an)^(1/
当n>2时显然有lnn<n(可求导证明),则1/lnn>1/n,而Σ(n=2→∞)1/n发散,所以由比较判别法知Σ(n=2→∞)1/lnn发散.
用等价无穷小啊,(1-lnn/n)^n=exp{【ln(1-lnn/n)】n},中括号里面那一块ln(1-lnn/n)等价于一个无穷小-lnn/n,所以原式等价于exp{(-lnn/n)n}=1/n,