∫根号x (1 三次根号x)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:07:43
令√x=tx=t^2dx=2tdt原式=∫2tdt/(1+t)=2∫[1-1/(1+t)]dt=2t-2ln(1+t)+C
令x=tgt,dx=(sect)^2dt∫dx/(x^2+1)^3=∫(cost)^4dt=(1/8)∫[cos4t+4cos2t+3]dt=(1/32)sin(4arctgx)+(1/4)sin(2
积分(1-根号x^3)dx方法:变量替换,设:根号x=t,这样,dx=d(t^2)=2tdt,然后就是:积分(1-t^3)*2tdt,很容易的.积分根号[x(x-2)]dx=积分根号[(x-1)^2-
令6次根号(x+1)=tx=t^6-1dx=6t^5dtx=0,t=1;x=2,t=6次根号(3)则根号(x+1)=t³,三次根号(x+1)=t²所以原式=∫(1,6次根号3)6t
∫1/根号x*sec^2(1-根号x)dx=2∫sec^2(1-根号x)d(√x)=-2∫sec^2(1-根号x)d(1-√x)=-2tan(1-√x)+c
令t=√x∫1/(1+2√x)dx=∫1/(1+2t)dt^2=∫2t/(1+2t)dt=∫1-1/(1+2t)dt=∫dt-∫1/(1+2t)dt=t+1/2ln(1+2t)+C=√x+1/2ln(
解令√x=t则t²=x,dx=2tdt∴∫dx/(1+√x)=∫2tdt/(t+1)=2∫[(t+1)-1]/(t+1)dt=2∫1-1/(t+1)dt=2t-2ln|t+1|+C=2√x-
∫√[1+√x]/x^[3/4]dxLetu=x,dx=4udu=∫√[1+u]/u*[4u]du=4∫√[1+u]duLetu=tanz,du=seczdz=4∫√[1+tanz][seczdz]=
设t=3次根号(x+1),x=t^3-1dx=3t^2dt原式=∫1/t*3t^2dt=∫3tdt=3/2t^2+C=3/2*3次根号(x+1)^2+C
令六次根号x=t则√x=t^3三次根号x=t^2dx=6t^5dt∫1/[√x+三次根号x]dx=∫6t^5/(t^3+t^2)dt=∫6t^3/(t+1)dt=6[∫(t^3+1)/(t+1)dt-
∫dx/x根号(1+lnx)=∫1/根号(1+lnx)d(1+lnx)=2根号(1+lnx)+c再问:=∫1/根号(1+lnx)d(1+lnx)为什么=2根号(1+lnx)+c再答:∫dx/x根号(1
再问:好人一生平安
(x^2)/2-18x^(1/2)+3x+C0.5*x^2+2*x^(1/2)+C9x-2x^3+0.2*x^5+C
∫1/[1+(√3x)]dx=1/√3·∫1/[1+(√3x)]d(√3x)=1/√3·∫1/[1+(√3x)]d(1+√3x)=1/√3·ln|1+√3x|+C
1,令³√(3-5x)=t,则x=(3-t³)/5,那么dx=-3t²/5dx∫³√(3-5x)dx=∫t(-3t²/5)dt=-3/5∫t³
☆⌒_⌒☆答案在这里,很简单而已.
∫x*√[(1-x)/(1+x)]dx=∫[x(1-x)/√(1-x^2)]dxletx=sinydy=cosydy∫[x(1-x)/√(1-x^2)]dx=∫siny(1-siny)dy=∫[sin
答:∫1/√xdx=∫x^(-1/2)dx=[1/(-1/2+1)]*x^(-1/2+1)+C=2√x+C