∫根号yds ,其中L是抛物线y=x²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:55:36
http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.
soeasy嘛,我讲思路你自己算,很容易的.作BC延长线和过A点的直线平行于BC,分别交于抛物线于E和F,如果B`、C`在抛物线上,则E与B`重合,F与C`重合,那么四边形ACB`C`就是正方形.只需
积分曲线x^2+(y+1)^2=1所以参数方程是x=cost,y=-1+sint.t∈[0,2π]ds=√[(x't)^2+(y't)^2]dt=dt∫√(x^2+y^2)ds=∫√(-2y)ds=∫
自行画图补线段L1:y=0,x从2到0,这样L+L1构成封闭曲线,可以使用格林公式,注意本封闭曲线为顺时针旋转,与格林公式中的逆时针不符,所以用格林公式时要多加一个负号.∮(x^2+y)dx-(x+s
垂直于x轴的直线l交抛物线y²=4x于A,B两点,且/AB/=4根号3yA=2根号3代入y²=4x12=4xx=3焦点(1,0)该抛物线的焦点到直线L的距离是3-1=2
如果所谓的F是该抛物线的焦点,那,应该是正负二分之根号二
设P=x+y,Q=x-y因为满足Q'x=P'y所以原积分与路径无关,可以选择两点之间的线段M,y=x,x从0到1来进行积分.原积分=∫(x+y)dx+(x-y)dy=∫M(x+x)dx+(x-x)dx
把点A和点C的坐标带入解析式得a+b+3=016a+4b+3=3a=1b=-4所以解析式为x2-4x+3=0
令P=2xy,Q=x+y².则αP/αy=2x,αQ/αx=1根据格林公式,得∮(2xy-x²)dx+(x+y²)dy=∫∫(1-2x)dxdy(S是L所围成区域)=∫d
补线段L1:y=1,x:1→-1,这样L+L1为封闭曲线,所围区域是D∮(L+L1)(x²+2xy)dx-(x²+y²siny)dy格林公式=∫∫(2x+2x)dxdy积
三种方法,第一用柯西不等式(x/√y+y/√x)(√y+√x)≥(√(x/√y*√y)+√(y/√x*√x))^2=(√x+√y)^2所以x/√y+y/√x≥√x+√y第二用综合法x/√y+y/√x-
{y=√x{y=x²==>交点为(0,0),(1,1)∫∫_Dx√ydσ=∫(0→1)x∫(x²→√x)√ydy=∫(0→1)x·(2/3)y^(3/2):(x²→√x)
再问:😭再问:老师,把dy化成dx,在dy的式子后面乘以x2的导数是什么意思啊再答:dy=y'dx再问:谢谢老师😂再问:等等,那不是应该除以一个y',才能变成dx吗再答
请问,学过第一类曲线积分的极坐标形式么?用别的坐标做起来会很麻烦x=r(t)cost.y=r(t)sintds=√[r^2+(r')^2]dt所以∫yds=∫(π到2π)a(1+cost)sint√[
可以用排序不等式,不妨设x>=y.
设P=x+y,Q=x-y因为满足Q'x=P'y所以原积分与路径无关,直接选从点(-1,1)到点(1,1)的水平线,因为y=1,dy=0所以原积分=∫(-1到1)(x+1)dx=2再问:关于这个与路径无
根据你的要求,下面补充用格林公式来进行计算的大概步骤2xy-x^2的关于y的偏导数是2x(x+y)^2的关于x的偏导数是2(x+y)显然y=x^2与y^2=x围成了一个闭区域,且属于x型区域D则根据格