∬(3x 2y)D其中是由两坐标及直线x y=2所围成的闭区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:34:31
∬(3x 2y)D其中是由两坐标及直线x y=2所围成的闭区域
先化简,再求值(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.

(3x2y-2xy2)-(xy2-2x2y)=3x2y-2xy2-xy2+2x2y=5x2y-3xy2当x=-1,y=2时,原式=5×(-1)2×2-3×(-1)×22=10+12=22.

求助二重积分的计算!∫∫(3x+2y)dxdy,其中D是由两坐标轴及直线x+y=2所围成的闭区域. D

思路:分部积分先将(3x+2y)关于y从0到2-x积分,再关于x从0到2积分原积分=6*x*(2-x)+2*(2-x)^2

2(x2y+xy)-3(x2y+xy)-4x2y其中x=-2,y=12

原式=2x2y+2xy-3x2y-3xy-4x2y=-5x2y-xy当x=-2,y=12时,原式=-9.

计算积分:∫∫ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1与两坐标所围成的位于第一象限内的闭区

∫(D)∫ln(1+x^2+y^2)dxdyD:x^2+y^2=1与两坐标所围成的位于第一象限内的闭区ρ=1,θ从0,到π/2dS=ρdθdρ∫(D)∫ln(1+x^2+y^2)dxdy=∫[0,1]

先化简后求值:4x2y-[6xy-3(4xy-2)-x2y]+1,其中x=2,y=-12

原式=4x2y-6xy+3(4xy-2)+x2y+1=5x2y+6xy-5当x=2,y=-12时,原式=5×4×(-12)+6×2×(-12)-5=-21.

有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=1

(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3=-2×(-1)3=2.因为化简的

用极坐标计算积分:∫∫ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1与两坐标所围成的位于第一象限内

答:∫(0到π/2)dθ∫(0到1)ln(1+r^2)rdr算不定积分∫rln(1+r^2)dr=∫1/2ln(1+r^2)d(1+r^2)=1/2∫ln(1+r^2)d(1+r^2)∫lnxdx=x

一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是(  )

根据题意得:(x3-3x2y)-(3x2y-3xy2)=x3-3x2y-3x2y+3xy2=x3-6x2y+3xy2,故选C.

求积分I= ∫ ∫根号(x^2+y^2)dxdy积分区域是D,其中D由y=x与y=x^4围成.用极坐标的方法.

y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c

一个多项式加上x2y-3xy2得2x2y-xy2,则这个多项式是(  )

(2x2y-xy2)-(x2y-3xy2)=2x2y-xy2-x2y+3xy2=x2y+2xy2.故选C.

先化简,再求值:x2y-[4x2y-(xyz-x2z)-3x2z]-2xyx,其中x的倒数等于其本身,|y|=3,x2=

x=±1,y=±3,z=±2xyzz>y则0>x>z>yx=-1,y=-3,z=-2,x2y-[4x2y-(xyz-x2z)-3x2z]-2xyx=x2y-4x2y+xyz-x2z+3x2z-2xyx

X为第ⅡA族的元素,Y为第ⅦA族的元素.由X和Y组成的化合物的化学式是?A:XY2;B:X2Y;C:X2Y3;D:X2Y

IIA族均为金属,形成化合物时显+2价,而Y为VIIA族元素,又X为正价,所以Y为负价,且为-1价,故选A:XY2.

(2x2y-2xy2)-[(-3x2y2+3x2y)+(3x2y2-3xy2)],其中x=-1,y=2.

原式=2x2y-2xy2-[-3x2y2+3x2y+3x2y2-3xy2]=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=2x2y-3x2y-2xy2+3xy2+3x2y2-3x2y

化简求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=-1,y=1.

原式=2x2y+2xy-3x2y+3xy-4x2y=-5x2y+5xy,当x=-1,y=1时,原式=-5×(-1)2×1+5×(-1)×1=-5-5=-10.

化简并求值:(2x2y-2xy2)-[(-3x2y2+3x2y)+(3x2y2-3xy2)],其中x=−12,y=2

原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2,当x=-12,y=2时,原式=-(−12)2×2+(-12)×22=-52.

利用极坐标求积分∫∫(x2+y2)dxdy 其中D是由直线y=x,y=x+a,y=a及y=3a(a>0)所围成的区域

这道题用极坐标变换便不好做,因为积分范围真的是不好确定.  应该是用积分变化.令y=y,和z=y-x,这时有范围a再问:这个方法懂的。是正确答案,谢谢啦只是老师要求用极坐标做啊……再答:极坐标的不好写