设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 11:20:15
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Sn.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Sn.
(I)设{an}的公差为d,{bn}的公比为q,则依题意有q>0,
∵a1=b1=1,a3+b5=21,a5+b3=13,
∴
1+2d+q4=21
1+4d+q2=13,解得d=2,q=2.
∴an=1+(n-1)d=2n-1,bn=2n−1,
(Ⅱ)由(I)得,an•bn=(2n-1)•2n-1,
Sn=1•20+3•21+…+(2n-1)•2n-1
2Sn=1•2+3•22+…+(2n-3)•2n-1+(2n-1)•2n
两式相减可得,-Sn=1+2(2+22+2n-1)-(2n-1)•2n
=1+2×
2(1−2n−1)
1−2-(2n-1)•2n
=(3-2n)•2n-3,
则Sn=(2n-3)•2n+3.
∵a1=b1=1,a3+b5=21,a5+b3=13,
∴
1+2d+q4=21
1+4d+q2=13,解得d=2,q=2.
∴an=1+(n-1)d=2n-1,bn=2n−1,
(Ⅱ)由(I)得,an•bn=(2n-1)•2n-1,
Sn=1•20+3•21+…+(2n-1)•2n-1
2Sn=1•2+3•22+…+(2n-3)•2n-1+(2n-1)•2n
两式相减可得,-Sn=1+2(2+22+2n-1)-(2n-1)•2n
=1+2×
2(1−2n−1)
1−2-(2n-1)•2n
=(3-2n)•2n-3,
则Sn=(2n-3)•2n+3.
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13,求{an}
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13 (1)求{
设an是等差数列,bn是各项都为正数的等比数列,且a1=b1=1,a5+b3=13 a3+b5=21
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=b1=1,a3+b5=21,a5+b3=13
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=b1=1,a3+b5=21,a5+b3=13.求{an},
设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=b1=1,a3+b5=21,a5+b3=13.求[an},
设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=b1=1,a3+b5=21,a5+b3=13.
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
设数列{an}是等差数列,{bn}为各项都为正数的等比数列.且a1=b1=1,a3+b5=21,a5+b3=13.
AN是等差数列,BN是各项都为正数的等比数列,且A1=B1=1,A3+B5=21,A5+B3=13