如图,△ABC中,∠ABC=45゜,D为BC上一点,CD=2BD,∠ADC=60゜.AE⊥BC于点E,CF⊥AD于点F,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 05:31:47
如图,△ABC中,∠ABC=45゜,D为BC上一点,CD=2BD,∠ADC=60゜.AE⊥BC于点E,CF⊥AD于点F,AE、CF相交于点G.
(1)求证:△AFG≌△CFD;
(2)若BC=3,AF=
(1)求证:△AFG≌△CFD;
(2)若BC=3,AF=
3 |
(1)证明:连接BF,
∵CF⊥AD,
∴∠DFC=∠CFD=90°,
∵∠ADC=60°,
∴∠FCD=30°,
∴CD=2DF,
∵CD=2BD,
∴BD=DF,
∴∠DBF=∠DFB,
∵∠ADC=∠DFB+∠FBD=60°,
∴∠DFB=∠DBF=30°,
∵∠ABC=45°,
∴∠ABF=45°-30°=15°,
∵∠ABF+∠BAF=∠BFD=30°,
∴∠FAB=15°,
即∠BAF=∠ABF,
∴BF=AF,
∵∠FBC=∠FCB=30°,
∴BF=CF,
∵AE⊥BC,
∴∠AED=90°,
∵∠ADC=60°,
∴∠FAG=30°=∠DCF,
在△AFG和△CFD中
∠AFG=∠CFD
AF=CF
∠FAG=∠FCD
∴△AFG≌△CFD(ASA).
(2)∵BC=3,CD=2BD,
∴BD=1,CD=2,
∵DF=BD,
∴DF=1,
∴在Rt△CFD中,由勾股定理得:CF=
22−12=
3,
∵△AFG≌△CFD,
∴DF=FG=1,
∴CG=
3-1,
在Rt△CEG中,∠GEC=90°,∠GCE=30°,
∴EG=
1
2CG=
3−1
2.
∵CF⊥AD,
∴∠DFC=∠CFD=90°,
∵∠ADC=60°,
∴∠FCD=30°,
∴CD=2DF,
∵CD=2BD,
∴BD=DF,
∴∠DBF=∠DFB,
∵∠ADC=∠DFB+∠FBD=60°,
∴∠DFB=∠DBF=30°,
∵∠ABC=45°,
∴∠ABF=45°-30°=15°,
∵∠ABF+∠BAF=∠BFD=30°,
∴∠FAB=15°,
即∠BAF=∠ABF,
∴BF=AF,
∵∠FBC=∠FCB=30°,
∴BF=CF,
∵AE⊥BC,
∴∠AED=90°,
∵∠ADC=60°,
∴∠FAG=30°=∠DCF,
在△AFG和△CFD中
∠AFG=∠CFD
AF=CF
∠FAG=∠FCD
∴△AFG≌△CFD(ASA).
(2)∵BC=3,CD=2BD,
∴BD=1,CD=2,
∵DF=BD,
∴DF=1,
∴在Rt△CFD中,由勾股定理得:CF=
22−12=
3,
∵△AFG≌△CFD,
∴DF=FG=1,
∴CG=
3-1,
在Rt△CEG中,∠GEC=90°,∠GCE=30°,
∴EG=
1
2CG=
3−1
2.
如图,△ABC中,∠ABC=45゜,D为BC上一点,CD=2BD,∠ADC=60゜.AE⊥BC于点E,CF⊥AD于点F,
如图,在△ABC中,∠ACB=90°,AC=BC,点E在BC上,过点C作CF⊥AE于点F,延长CF使CD=AE,连接BD
24、如图,△ABC中,∠BAC=,AB=AC,AD⊥BC于D,点E是线段BD上一点,连接AE,CH⊥AE交AD于F,交
如图,在正△ABC中,D、E分别是BC、AC上一点,AE=CD,AD与BE交于点F,AF=12BF.求证:CF⊥BE.
如图,△ABC中,AB=AC,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB上的一点,连接
如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么
如图,在△ABC中,已知∠A=90°,AB=AC,D为AC上一点,AE⊥BD于E,延长AE交BC于F,问:当点D满足什么
如图,在△ABC中,∠ABC=∠ACB,BD⊥AC于D点,E为BC上一点,EF⊥AC于F点,EG⊥AB于G点.求证:BD
如图,△ABC中 ∠ACB=90° AC=BC 点D是AB上一点 AE⊥CD于点E BF⊥CD交CD的延长线于点F CH
(如图)在等边三角形ABC中,D为BC上一点,BD=2CD,DE⊥AB于点E ,CE交AD于点P,求∠APE的度数.
已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点P为BC上任意一点,PE⊥AB于E,PF⊥AC于点F.
如图,在等边三角形ABC中,CF为BC的延长线,D为BC上一点,∠DAE=60°,AE交角ACF的平分线于点E,求△AD