如图,函数y=2cos(ωx+θ)(x∈R,0≤θ≤π\2,ω>0)的图像与y轴交于点(0,根号3)
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 23:12:34
如图,函数y=2cos(ωx+θ)(x∈R,0≤θ≤π\2,ω>0)的图像与y轴交于点(0,根号3)
过该点与x轴平行的直线交图像相邻点为(5π\6,根号3),已知A(π\2,0),点P是该函数图像上一点,点Q(x0,y0)是PA的中点,当y0=根号3,x0∈[π\2,π]时,求x0的值.
过该点与x轴平行的直线交图像相邻点为(5π\6,根号3),已知A(π\2,0),点P是该函数图像上一点,点Q(x0,y0)是PA的中点,当y0=根号3,x0∈[π\2,π]时,求x0的值.
解析:∵函数y=2cos(ωx+θ)(x∈R,0≤θ≤π/2,ω>0)的图像与y轴交于点(0,√3)
y=2cosθ=√3==>θ=π/6
Y=√3交图像相邻点为(5π/6,√3)
y=2cos(ω*5π/6+π/6)= √3
ω*5π/6+π/6=π/6==>ω=0,ω*5π/6+π/6=11π/6==>ω*5π/6=10π/6==>ω=2
∴y=2cos(2x+π/6)
又点P是该函数图像上一点,A(π/2,0),Q(x0,y0) 是PA的中点
设P(x,2cos(2x+π/6))
X0=(x+π/2)/2,y0=(2cos(2x+π/6)+0)/2=cos(2x+π/6)=√3>1
∴P点不在函数图像上,与已知矛盾
若y0=√3/2
cos(2x+π/6)=√3/2==>(2x+π/6)=11π/6==>x=5π/6
∵x0∈[π/2,π]
X0=(5π/6+π/2)/2=2π/3
y=2cosθ=√3==>θ=π/6
Y=√3交图像相邻点为(5π/6,√3)
y=2cos(ω*5π/6+π/6)= √3
ω*5π/6+π/6=π/6==>ω=0,ω*5π/6+π/6=11π/6==>ω*5π/6=10π/6==>ω=2
∴y=2cos(2x+π/6)
又点P是该函数图像上一点,A(π/2,0),Q(x0,y0) 是PA的中点
设P(x,2cos(2x+π/6))
X0=(x+π/2)/2,y0=(2cos(2x+π/6)+0)/2=cos(2x+π/6)=√3>1
∴P点不在函数图像上,与已知矛盾
若y0=√3/2
cos(2x+π/6)=√3/2==>(2x+π/6)=11π/6==>x=5π/6
∵x0∈[π/2,π]
X0=(5π/6+π/2)/2=2π/3
如图,函数y=2cos(ωx+θ)(x∈R,0≤θ≤π\2,ω>0)的图像与y轴交于点(0,根号3)
如图所示,函数y=2cos(ωx+θ)(x∈R,0≤θ≤)的图像与y轴交于点(0,根号3),且该函数的最小正周期为π
函数f(x)=2cos(ωx+θ)(x∈R,0≤θ≤π\2,ω>0)的图像与y轴交于点(0,根号3),且该函数的最小正周
,函数f(x)=2cos(ωx+θ)(x∈R,0≤θ≤π\2,ω>0)的图像与y轴交于点(0,根号3),且该函数的最小正
如图所示,函数y=2cos(ωx+θ)(x∈R,0≤θ≤)的图像与y轴交于点(0,),且在该点处切线的斜率为-2.
(2007•江西)如图,函数y=2cos(ωx+θ)(x∈R,0≤θ≤π2)的图象与y轴交于点(0,3),且在该点处切线
如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤π/2)的图像与y轴交于点(0,1)
如图,函数y=-x+1与函数y=-x分之2(x>0)的图像交于点A,则根据图...
如图,一次函数y=-2x+4的图像与x、y轴分别相交与点A,B,与反比例函数y=2/x(x>0)的图像交于点c
如图,直线OM:y=x (x>0) 与反比例函数的图像交于点A,已知OA=2根号2
三角函数化简问题函数y=2sin(ωX+φ)(x∈R,0≤Φ≤π/2)的图像与y轴交与(0,√3),且在该点处的切线的斜
如图,已知二次函数y=1/2x²+mx+n(n≠0)的图像与一次函数y=x的图像交于A、B两点,与y轴交于点C