作业帮 > 数学 > 作业

求经过圆x²+y²-2x-2y+1=0,x²+y²-6x-4y+9=0的交点,且

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:25:10
求经过圆x²+y²-2x-2y+1=0,x²+y²-6x-4y+9=0的交点,且圆心在直线y=2x上圆的方程
两个方程组怎么解,
求经过圆x²+y²-2x-2y+1=0,x²+y²-6x-4y+9=0的交点,且
没有必要解方程组.
圆经过圆x²+y²-2x-2y+1=0,x²+y²-6x-4y+9=0的交点
那么可以设圆是x²+y²-2x-2y+1+λ(x²+y²-6x-4y+9)=0
化简得(λ+1)x²-(6λ+2)x+(λ+1)y²-(4λ+2)y+9λ+1=0
所以圆心是((3λ+1)/(λ+1),(2λ+1)/(λ+1))
又因为圆心在直线y=2x上
所以(2λ+1)/(λ+1)=2(3λ+1)/(λ+1)
即λ=-1/4
所以圆的方程是(3/4)x²-(1/2)x+(3/4)y²-y-5/4=0
即(x-1/3)²+(y-2/3)²=20/9