过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 07:05:50
过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.
若存在,求出x,若不存在,请说明理由.
若存在,求出x,若不存在,请说明理由.
这个题目计算比较复杂啊,以前做过类似的题目,你参考下自己来做吧.
直线过D(-1,0)且与抛物线y^2=4x交与A,B两点,是否x轴上存在一点E,使得三角形ABE为等边三角形.若有求E
由已知:设过点D(-1,0)的直线方程为:y=k(x+1) 联立y=k(x+1) 和y²=4x 消去“x”得k²x²+2(k²-2)x+k²=0 由已知Δ=4(k²-2)²-4(k²)²=-2(2k²-2)>0
∴k²<1 且k不为0,
另设A(x1,y1) B(x2,y2) AB中点为N(x′,y′) 设E(m,0)
由韦达定理:x1+x2=(4-2k²)/k² ,x1x2=1;且y1+y2=4/k ,y1y2=4
∴N(2/k²-1,2/k) 则线段AB的中垂线NE交x由于E,∴直线NE斜率K′=-1/k
∴m=1+2/k²
|AB|²=(x1-x2)²+(y1-y2)²=(x1+x2)²+(y1+y2)²-4x1x2-4y1y2=16/(k²)²-16
|NE|²=4+4/k²
在正三角形中高为边的√3/2,即有:3|AB|²/4=|NE|²
得48(1/(k^4-1)=16(1+1/k²)==>3/k^4-1/k²+4=0
分解得(3/k²-4)(1/k²-1)=0
得k²=3/4 或k²=1(舍去)
即m=1+2/k²=11/3,故满足条件的点E(11/3,0).
直线过D(-1,0)且与抛物线y^2=4x交与A,B两点,是否x轴上存在一点E,使得三角形ABE为等边三角形.若有求E
由已知:设过点D(-1,0)的直线方程为:y=k(x+1) 联立y=k(x+1) 和y²=4x 消去“x”得k²x²+2(k²-2)x+k²=0 由已知Δ=4(k²-2)²-4(k²)²=-2(2k²-2)>0
∴k²<1 且k不为0,
另设A(x1,y1) B(x2,y2) AB中点为N(x′,y′) 设E(m,0)
由韦达定理:x1+x2=(4-2k²)/k² ,x1x2=1;且y1+y2=4/k ,y1y2=4
∴N(2/k²-1,2/k) 则线段AB的中垂线NE交x由于E,∴直线NE斜率K′=-1/k
∴m=1+2/k²
|AB|²=(x1-x2)²+(y1-y2)²=(x1+x2)²+(y1+y2)²-4x1x2-4y1y2=16/(k²)²-16
|NE|²=4+4/k²
在正三角形中高为边的√3/2,即有:3|AB|²/4=|NE|²
得48(1/(k^4-1)=16(1+1/k²)==>3/k^4-1/k²+4=0
分解得(3/k²-4)(1/k²-1)=0
得k²=3/4 或k²=1(舍去)
即m=1+2/k²=11/3,故满足条件的点E(11/3,0).
过T(-1,0)做直线l与曲线N:y^2=x交于A、B,在x轴上是否存在E(x,0),使三角形ABE为等边三角形.
过T(-1,0)作直线与Y^2=4X交于A.B两点,若在X轴上存在一点E(X1,0),使△ABE为等边三角形,求X1的值
已知:轨迹C方程y^2=4x,过(-1,0)作直线与轨迹C交A,B两点,若在x轴上存在一点E(x.,0),使△ABE为等
在在平面直角坐标系中,直线y=2/1x+4 交x轴于点A 交y轴与点B在直线AB上是否存在一点P 使三角形OAP的面积为
已知曲线C的方程:x^2+y^2-4x+2y+5m=0 若M=0,是否存在过点P(0,2)的直线l与曲线C交于A、B两点
已知圆C过点A(2,-2)、B(-3,-2),且圆心在直线x-y+1=0上.是否存在实数b,使直线n:y=x+b与圆C交
曲线E:y=8分之1x2,,过F(2,0)任做一条直线l交曲线E与A,B两点,是否从在一直线使以A,B为切点的切线的交点
二次函数y=x2-4x+3上,是否存在过点D(0,-2.5)的直线与它交于M,N,与X轴交于点E,使MN关于E点对称?
椭圆C方程:(x^2)/4+(y^2)/3=1,过右焦点F2做斜率为K的直线交椭圆于M.N,在X轴上是否存在P(m,0)
过点P(2,0)作倾斜角a为的直线L与曲线x^2+2y^2=1交于A、B两点
已知抛物线y^2=2px(p大于0),在x轴上是否存在一点M,使过M的任意直线l(x州除外)与抛物线交于A(x1,y1)
已知直线l与曲线C:x^2+y^2-2x-2y+1=0相切,直线l与x轴,y轴分别交于A,B,O为原点|OA|=a,|O