作业帮 > 数学 > 作业

已知椭圆x2a2+y2b2=1(a>b>0)的离心率是63,过椭圆上一点M作直线MA,MB分别交椭圆于A,B两点,且斜率

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 10:28:47
已知椭圆
x
已知椭圆x2a2+y2b2=1(a>b>0)的离心率是63,过椭圆上一点M作直线MA,MB分别交椭圆于A,B两点,且斜率
设点M(x,y),A(x1,y1),B(-x1,-y1),
则y2=b2−
b2x2
a2,
y21=b2−
b2
x21
a2,
∴k1•k2=
y−y1
x−x1•
y+y1
x+x1=
y2−
y21
x2−
x21=−
b2
a2=
c2
a2−1=e2-1=(

6
3)2−1=−
1
3.
故选D.
已知椭圆x2a2+y2b2=1(a>b>0)的离心率是63,过椭圆上一点M作直线MA,MB分别交椭圆于A,B两点,且斜率 圆锥曲线的问题已知点M是离心率是(根号6)/3的椭圆(标准式)上一点,过点M作直线MA、MB交椭圆C于A,B两点,且斜率 已知双曲线x2a2-y2b2=1(a>0),b>0的离心率是233,过双曲线上一点M作直线MA,MB交双曲线于A、B两点 过椭圆x∧2/a∧2+y∧2/b∧2=1(a>b>0)上一点M作直线MA,MB交椭圆于A,B两点 设MA,MB的斜率分别 如图,已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,过左焦点F(-3,0)且斜率为k的直线交椭圆于A, 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率是根6/3,过椭圆上一点M作直线MA,MB分别交椭圆于A 已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双 已知椭圆的方程为x2a2+y2b2=1(a>b>0),过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线 (2014•上饶二模)已知椭圆C:x2a2+y2b2=1(a>b>0),过椭圆C的右焦点F的直线l交椭圆于A,B两点,交 点M是e=√6/3的椭圆C:X^2/a^2+Y^2/b^2=1(a>b>0)上的一点,过M作直线MA.MB且斜率分别为k 已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线交椭圆C于A、B两 已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两