作业帮 > 数学 > 作业

已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆截得的弦长为AB,以AB为直径的圆经过原点

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 09:16:28
已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆截得的弦长为AB,以AB为直径的圆经过原点.
若存在,写出直线l的方程;若不存在,说明理由.
已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆截得的弦长为AB,以AB为直径的圆经过原点
令A(x1,y1),B(x2,y2)
若存在直线L使得弦AB为经过原点的圆M的直径
则圆M的圆心坐标为[(x1+x2)/2,(y1+y2)/2]
圆M的半径为AB/2
于是得到圆M的方程为[x-(x1+x2)/2]^2+[y-(y1+y2)/2]^2=(AB/2)^2
因圆M过原点(0,0)
则有[(x1+x2)/2]^2+[(y1+y2)/2]^2=(AB/2)^2
即有(x1+x2)^2+(y1+y2)^2=AB^2(*)
令直线L方程为y=x+m(注意到k=1)
代入圆C方程有2x^2+2(m+1)x+m^2+4m-4=0
由韦达定理有
x1+x2=-(m+1)(I)
x1x2=(m^2+4m-4)/2
由弦长公式有
AB=|x1-x2|*√(1+k^2)(注意到k=1)
=√2*√[(x1+x2)^2-4x1x2]
=√2*√(-m^2-6m+9)(II)
因A、B都在直线L上,则有
y1=x1+m
y2=x2+m
两式相加得y1+y2=x1+x2+2m=m-1(III)
将(I)(II)(III)代入(*)得
m^2+3m-4=0
解得m=-4或m=1
综上可知,满足条件的直线L有两条:
y=x-4
y=x+1
已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆截得的弦长为AB,以AB为直径的圆经过原点 已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆C截得弦AB,以AB为直径的圆经过原点. 已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率为1的直线l,使得l被圆C截得的弦AB为直径的圆经过原点,若存在 已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出 已知圆C;X2+Y2-2X+4Y-4=0,是否存在斜率为1的直线L,使L被圆C截得的弦AB为直径的圆经过原点, 高一圆方程题已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率为1的直线L,使L被圆所截得的弦长为AB,以AB为直 已知圆c:x^2+y^2-2x+4y-4=0,问是否存在斜率为1的直线l,使以l被圆c截得弦AB为直径的圆经过原点,若存 (1)已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线L,使得以L被圆C截得的弦AB为直径的圆过原点?若 一道圆的题目.已知圆x2+y2-2x+4y-4=0,问是否存在斜率为1的直线l ,使得l被圆截得弦ab 为直径的圆经过原 已知圆C:x^2+y^2-2x+4y-4=0,问是否存在斜率为1的直线L,使L被圆C截得的弦为AB,以AB为直径的圆经过 1.已知圆C:x^2+y^2-2x+4y-4=0,是否存在斜率为1的直线l,使以l被圆C所截得的弦AB为直径的圆经过原点 已知圆C:x^2+y^2-2x+4y+4=0,是否存在斜率1的直线l,使以l被圆C所截得的弦AB为直径的圆经过原点?