作业帮 > 数学 > 作业

已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 01:09:02
已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出
圆C化成标准方程为(x-1)2+(y+2)2=9,假设存在以AB为直径的圆M,圆心M的坐标为(a,b).
∵CM⊥l,即kCM•kl=
b+2
a−1×1=-1
∴b=-a-1
∴直线l的方程为y-b=x-a,即x-y-2a-1=0
∴|CM|2=(
|1+2−2a−1|

2)2=2(1-a)2
∴|MB|2=|CB|2-|CM|2=-2a2+4a+7
∵|MB|=|OM|
∴-2a2+4a+7=a2+b2,得a=-1或
3
2,
当a=
3
2时,b=-
5
2,此时直线l的方程为x-y-4=0
当a=-1时,b=0,此时直线l的方程为x-y+1=0
故这样的直线l是存在的,方程为x-y-4=0或x-y+1=0.