已知函数f(x)=ax2-ex(a∈R,e为自然对数的底数),f′(x)是f(x)的导函数.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 18:42:15
已知函数f(x)=ax2-ex(a∈R,e为自然对数的底数),f′(x)是f(x)的导函数.
(1)解关于x的不等式:f(x)>f′(x);
(2)若f(x)有两个极值点x1,x2,求实数a的取值范围.
(1)解关于x的不等式:f(x)>f′(x);
(2)若f(x)有两个极值点x1,x2,求实数a的取值范围.
(1)f′(x)=2ax-ex,f(x)-f′(x)=ax(x-2)>0.
当a=0时,无解;
当a>0时,解集为{x|x<0或x>2};
当a<0时,解集为{x|0<x<2}.
(2)设g(x)=f′(x)=2ax-ex,则x1,x2是方程g(x)=0的两个根.g′(x)=2a-ex,
当a≤0时,g′(x)<0恒成立,g(x)单调递减,方程g(x)=0不可能有两个根;
当a>0时,由g′(x)=0,得x=ln 2a,
当x∈(-∞,ln2a)时,g′(x)>0,g(x)单调递增,
当x∈(ln2a,+∞)时,g′(x)<0,g(x)单调递减.
∴当g(x)max>0时,方程g(x)=0才有两个根,
∴g(x)max=g(ln2a)=2aln2a-2a>0,
得a>
e
2.
当a=0时,无解;
当a>0时,解集为{x|x<0或x>2};
当a<0时,解集为{x|0<x<2}.
(2)设g(x)=f′(x)=2ax-ex,则x1,x2是方程g(x)=0的两个根.g′(x)=2a-ex,
当a≤0时,g′(x)<0恒成立,g(x)单调递减,方程g(x)=0不可能有两个根;
当a>0时,由g′(x)=0,得x=ln 2a,
当x∈(-∞,ln2a)时,g′(x)>0,g(x)单调递增,
当x∈(ln2a,+∞)时,g′(x)<0,g(x)单调递减.
∴当g(x)max>0时,方程g(x)=0才有两个根,
∴g(x)max=g(ln2a)=2aln2a-2a>0,
得a>
e
2.
(2014•漳州二模)已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R. (1)若a=1,求曲线f(x)在点(1,f(
已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R. 若a=-1存在k∈R使得方程f(x)=k有3
已知函数f(x)=ex-x(e为自然对数的底数)
已知函数f(x)=ex+aex(a∈R)(其中e是自然对数的底数)
已知函数f(x)=(ax2-2x+1)•e-x(a∈R,e为自然对数的底数).
设函数f(x)=ex-x(e为自然对数的底数).
已知函数f(x)=ex-ax(e为自然对数的底数)
已知函数f(x)=ex-kx,x属于R(e是自然对数的底数)
已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数).
已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数).
(2014•石家庄二模)已知函数f(x)=ex-ax-1(a∈R),其中e为自然对数的底数.