阅读下列材料:小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/06 13:52:43
阅读下列材料:
小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.
小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.
(1)请你写出图2中,PA+PB+PC的最小值为
小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.
小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.
(1)请你写出图2中,PA+PB+PC的最小值为
61 |
(1)如图2.∵将△APC绕点C顺时针旋转60°,得到△EDC,
∴△APC≌△EDC,
∴∠ACP=∠ECD,AC=EC=5,∠PCD=60°,
∴∠ACP+∠PCB=∠ECD+∠PCB,
∴∠ECD+∠PCB=∠ACB=30°,
∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°.
在Rt△BCE中,∵∠BCE=90°,BC=6,CE=5,
∴BE=
BC2+CE2=
62+52=
61,
即PA+PB+PC的最小值为
61;
(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,
则线段BD等于PA+PB+PC最小值的线段;
②如图,当B、P、E、D四点共线时,PA+PB+PC值最小,最小值为BD.
∵将△APC绕点C顺时针旋转60°,得到△DEC,
∴△APC≌△DEC,
∴CP=CE,∠PCE=60°,
∴△PCE是等边三角形,
∴PE=CE=CP,∠EPC=∠CEP=60°.
∵菱形ABCD中,∠ABP=∠CBP=
1
2∠ABC=30°,
∴∠PCB=∠EPC-∠CBP=60°-∠30°=30°,
∴∠PCB=∠CBP=30°,
∴BP=CP,
同理,DE=CE,
∴BP=PE=ED.
连接AC,交BD于点O,则AC⊥BD.
在Rt△BOC中,∵∠BOC=90°,∠OBC=30°,BC=4,
∴BO=BC•cos∠OBC=4×
3
2=2
3,
∴BD=2BO=4
3,
∴BP=
1
3BD=
4
3
3.
即当PA+PB+PC值最小时PB的长为
4
3
3.
故答案为:
61.
∴△APC≌△EDC,
∴∠ACP=∠ECD,AC=EC=5,∠PCD=60°,
∴∠ACP+∠PCB=∠ECD+∠PCB,
∴∠ECD+∠PCB=∠ACB=30°,
∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°.
在Rt△BCE中,∵∠BCE=90°,BC=6,CE=5,
∴BE=
BC2+CE2=
62+52=
61,
即PA+PB+PC的最小值为
61;
(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,
则线段BD等于PA+PB+PC最小值的线段;
②如图,当B、P、E、D四点共线时,PA+PB+PC值最小,最小值为BD.
∵将△APC绕点C顺时针旋转60°,得到△DEC,
∴△APC≌△DEC,
∴CP=CE,∠PCE=60°,
∴△PCE是等边三角形,
∴PE=CE=CP,∠EPC=∠CEP=60°.
∵菱形ABCD中,∠ABP=∠CBP=
1
2∠ABC=30°,
∴∠PCB=∠EPC-∠CBP=60°-∠30°=30°,
∴∠PCB=∠CBP=30°,
∴BP=CP,
同理,DE=CE,
∴BP=PE=ED.
连接AC,交BD于点O,则AC⊥BD.
在Rt△BOC中,∵∠BOC=90°,∠OBC=30°,BC=4,
∴BO=BC•cos∠OBC=4×
3
2=2
3,
∴BD=2BO=4
3,
∴BP=
1
3BD=
4
3
3.
即当PA+PB+PC值最小时PB的长为
4
3
3.
故答案为:
61.
22.阅读下列材料小华遇到这样一个问题,如图1,△ABC中,∠ACB=30º,BC=6,AC=5,在△ABC内
16.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以
如图1,三角形ABC中,角ACB=30度,BC=6,AC=5,在三角形ABC那边有一点P,连接PA PB PC,求PA+
如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )
如图,在△ABC中,BC与AB差为17,和为31,AC比BC多1,在△ABC内部有一点P,点P到△ABC各边距离为PO.
如图,△ABC中,AB=BC=AC,∠ACB=60°
如图,在△ABC中,∠ACB=90°,BE平分∠ABC,CF平分∠ACB,CF,BE交于点P,AC=4cm,BC=3cm
如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC.求MN的长
如图 在△abc中∠acb=90°ac=bc=1 将△abc绕点c逆时针旋转角a(0°
如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以
如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,P为BC的中点.动点Q从点P出发,沿射线PC方
如图2,三角形ABC中,有一点P在AC上移动,若AB=AC=5,BC=6,试求AP+BP+CP的最小值