作业帮 > 数学 > 作业

已知函数f(x)=ax^2+bx+c(a≠0)的图像过点A(0,1)和B(-1,0),且b^2-4a≤0. (1)求f(

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:08:59
已知函数f(x)=ax^2+bx+c(a≠0)的图像过点A(0,1)和B(-1,0),且b^2-4a≤0. (1)求f(x)的解析式;

已知函数f(x)=ax^2+bx+c(a≠0)的图像过点A(0,1)和B(-1,0),且b^2-4a≤0.

(1)求f(x)的解析式;

(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

已知函数f(x)=ax^2+bx+c(a≠0)的图像过点A(0,1)和B(-1,0),且b^2-4a≤0. (1)求f(
第一题,把A,B两点代入即可.
c=1,b=a+1,代入那个不等式(a-1)^2≤0,所以a=1,b=2
所以f(x)=x^2+2x+1=(x+1)^2 再答: g(x)=x^2+(2-k)x+1 g'(x)=2x+2-k 画出图像,g'(2)≤0 所以k≥6