a1=2,a2=4,数列bn=a(n+1)-an,b(n+1)=2bn+2,求证,数列{bn+2}是等比数列,求an的通
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:46:32
a1=2,a2=4,数列bn=a(n+1)-an,b(n+1)=2bn+2,求证,数列{bn+2}是等比数列,求an的通项公式
⑴因为b(n+1)=2bn+2
b(n+1)+2=2(bn+2)
[b(n+1)+2]/(bn+2)=2
b1=a2-a1=4-2=2
所以{bn+2}为首相为2 公比为2的等比数列
{bn+2}=2^n
bn=(2^n) -2
b1=a2-a1
b2=a3-a2
b3=a4-a3
……
b(n-1)=an-a(n-1)
累加得,Sn=b1+b2+b3+……+bn=an-a1=2^1-2+2^2-2+2^3-2+……+2^(n-1)-2
=2^1+2^2+2^3+……+2^(n-1)-2n
=[2*(1-2^(n-1))]/(1-2) -2n
=2^n-4-2n
所以an-a1=2^n-2n-4
an=2^n-2n-2
后面的具体在自己算一下吧 我怕我算错了
b(n+1)+2=2(bn+2)
[b(n+1)+2]/(bn+2)=2
b1=a2-a1=4-2=2
所以{bn+2}为首相为2 公比为2的等比数列
{bn+2}=2^n
bn=(2^n) -2
b1=a2-a1
b2=a3-a2
b3=a4-a3
……
b(n-1)=an-a(n-1)
累加得,Sn=b1+b2+b3+……+bn=an-a1=2^1-2+2^2-2+2^3-2+……+2^(n-1)-2
=2^1+2^2+2^3+……+2^(n-1)-2n
=[2*(1-2^(n-1))]/(1-2) -2n
=2^n-4-2n
所以an-a1=2^n-2n-4
an=2^n-2n-2
后面的具体在自己算一下吧 我怕我算错了
a1=2,a2=4,数列bn=a(n+1)-an,b(n+1)=2bn+2,求证,数列{bn+2}是等比数列,求an的通
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
在数列{an}中,已知a1=-1,an+a(n+1)+4n+2=0 (1)求bn=an+2n,求证:{bn}为等比数列
在数列an中a1=2,a(n+1)下标=4an-3n+1 1设bn=an-n求证bn是等比数列 2求数列an的前n项和s
已知等比数列{an}的首项a1>0,公比q>0.设数列{bn}的通项bn=a(n+1)+a(n+2),数列{an},{b
已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n
已知数列an,bn满足a1=1,a2=3,(b(n)+1)/bn=2,bn=a(n+1)-an,(n∈正整数)
高二数列练习题 数列{an}中,a1=4,an=4-4/a(n-1),数列{bn},bn=1/an-2,求:(1){bn
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证
急 设A1=2,A2=4,数列Bn满足:Bn=A(n+1)-An,B(n+1)=2Bn +2