证明f(x)=ax²+bx+c在(-∞,-b/2a]上是减函数
证明:函数f(x)=ax²+bx+c(a>0)在[-b/2a,+∞]上是增函数
证明二次函数f(x)=ax^2+bx+c (a<0)在区间(—∞,—b/2a〕上是增函数.
设函数f(x)=(ax²+1)/(bx+c) 且(a,b,c∈Z)是奇函数,且在[1,+∞)上单调递增,f(1
证明二次函数y=aX×X+bX+c(a>0)在[-b/2a,+∞)上是增函数
已知一次函数f(x)=ax+b,二次函数g(x)=ax²+bx+c,a>b>c且a+b+c=0.
已知函数f(x)=ax²+c/bx+c(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
证明 1 二次函数f(x)=ax^2+bx+c a小于0 在区间(负无穷,-b/2a) 上是增函数
证明函数f(x)=ax^2+bx+c(a>0)在〔-b/2a,正无穷大)上为增函数
证明二次函数f(x)=ax的平方+bx+c(a小于0)在区间(负无穷大,-2a分之B]上是增函数.
证明2次函数f(x)=ax2+bx+c(a>0)在区间[-b/2a,+∞)上是增函数
证明2次函数f(x)=ax2+bx+c(a>0)在区间(-∞,-b/2a)上是增函数
增函数 证明二次函数f(x)=ax^2+bx+c (a