已知m>0,n>0,向量a=(1,1),向量b=(m,n-3),且a⊥(a+b),则1/m+4/n的最小值为
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 08:30:10
已知m>0,n>0,向量a=(1,1),向量b=(m,n-3),且a⊥(a+b),则1/m+4/n的最小值为
向量a=(1,1),向量b=(m,n-3),
a+b=(m+1,n-2)
a⊥(a+b),则:a*(a+b)=0
即:m+1+n-2=0
得:m+n=1
所以,1/m+4/n=(1/m+4/n)(m+n)
=1+n/m+4m/n+4
=5+n/m+4m/n
因为m>0,n>0
由基本不等式:n/m+4m/n≧4
当且仅当n/m=4m/n时,等号成立
所以,1/m+4/n=5+n/m+4m/n≧5+4=9
所以,1/m+4/n的最小值为9
a+b=(m+1,n-2)
a⊥(a+b),则:a*(a+b)=0
即:m+1+n-2=0
得:m+n=1
所以,1/m+4/n=(1/m+4/n)(m+n)
=1+n/m+4m/n+4
=5+n/m+4m/n
因为m>0,n>0
由基本不等式:n/m+4m/n≧4
当且仅当n/m=4m/n时,等号成立
所以,1/m+4/n=5+n/m+4m/n≧5+4=9
所以,1/m+4/n的最小值为9
已知m>0,n>0,向量a=(1,1),向量b=(m,n-3),且a⊥(a+b),则1/m+4/n的最小值为
已知向量m=(1,1),向量n与向量m的夹角为3派/4,且向量m·向量n=-1.设向量a=(1,0),向量b=(cosx
已知向量a=(√3,-1),b=(sina,cosa),且|a-b|的最大值与最小值分别为m,n,则m-n=
已知向量a=(1,2),向量b=(m+n,m)(m>0,n>0),若向量a *向量b=1,则m+n的最小值是?
向量a=(1,n)b=(m+n,m)(m>0 n>0)a.b=1 m+n最小值为?
向量a=(m,1),向量b=(1-n,1)(其中m,n为正数),若 a平行b,则1/m+2/n的最小值是
设|m向量|=1,|n向量|=2,2m向量+n向量与m向量—3n向量垂直,若向量a=4m-n,向量b=7m+n,则a与b
已知向量a=(n,4) 若向量b=(n-3,n-4) 向量a=m向量b 则实数m的值为
已知向量m=(1.0)向量n(1/2,根号3/2),且向量a=m+2n,b=2m-3n,则a与b的夹角为
高一基本向量题!已知向量a=(1,2),向量b=(m+n,m)(m>0,n>0),若向量a *向量b=1,则m+n的最小
已知m大于0,n大于0,向量a=(m,1),b=(2-n,1),且a平行于b,则m分之一加n分之一的最小值是
已知向量m,n的夹角为60°,m的模=1 n的模=2 ,向量a=3m+2n(向量),向量b=2m-n(向量)