证明F(x)=积分(a到b)(|x-t|T(t)dt)在(a,b)上是凹的
d[A(x)到B(x)积分f(x,t)dt]/dx
证明题求定积分设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间
一道定积分的证明题若f(x)在[a,b]上有界并可积,则G(x)=∫0xf(t)dt在[a,b]上连续.(即f(t)在0
函数f(x)>0在[a,b]上连续,令F(x)=∫(0到x)f(t)dt+∫(0到x)1/f(t)dt,证明方程F(x)
f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)
f(x)在闭区间a,b 上连续 则F(X)=∫a到x (x-t)f(t)dt在开区间a,b内
设f(x)在[a,b]上连续,且F(x)=积分号x->a (x-t)f(t)dt,x属于[a,b],求F(x)的n阶导.
f(x)在闭区间a到b上连续,F(x)=∫a到x (x-t)f(t)dt,x在a到b上,求F(x)的二阶导数
f(x)在[a,b]上连续且大于零,试证明方程∫[a,x]f(t)dt+∫[b,x]1/f(t)dt=0有且仅有1个实跟
关于积分中值定理的f(x)和g(x)在[a,b]可导连续;[a,b) 上,∫(x,a) f(t)dt>=∫(x,a) g
f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)《0,F(x)=定积分(a~x)f(t)dt/(x-a),证
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt