一道定积分的证明题若f(x)在[a,b]上有界并可积,则G(x)=∫0xf(t)dt在[a,b]上连续.(即f(t)在0
一道定积分的证明题若f(x)在[a,b]上有界并可积,则G(x)=∫0xf(t)dt在[a,b]上连续.(即f(t)在0
f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)
函数f(x)与xf(x)在[a,b]上连续,且f(x)与xf(x)在[a,b]上的定积分都==0,
关于积分中值定理的f(x)和g(x)在[a,b]可导连续;[a,b) 上,∫(x,a) f(t)dt>=∫(x,a) g
证明题求定积分设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间
f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)《0,F(x)=定积分(a~x)f(t)dt/(x-a),证
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)=-
设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)等于
设f(x)在[a,b]连续,在(a,b)可导,f'(x)≤0,F(x)=[∫(a→x)f(t)dt]/(x-a),证明在
函数f(x)>0在[a,b]上连续,令F(x)=∫(0到x)f(t)dt+∫(0到x)1/f(t)dt,证明方程F(x)
定积分证明题设f(x)在(-∞,+∞)上连续,F(x)=∫(2x-4t)f(t)dt(从0到x),若f(x)为奇函数,(