如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰A
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:05:38
如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75°,以CD为一边的等边△DCE的另一顶点E在腰AB上.
(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求
(1)求∠AED的度数;
(2)求证:AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求
DF |
FC |
(1)∵∠BCD=75°,AD∥BC,
∴∠ADC=105°.
由等边△DCE可知∠CDE=60°,
故∠ADE=45°.
由AB⊥BC,AD∥BC,可得∠DAB=90°,
∴∠AED=45°.
(2)证明:由(1)知∠AED=45°,
∴AD=AE,故点A在线段DE的垂直平分线上.
由△DCE是等边三角形得CD=CE,故点C也在线段DE的垂直平分线上.
∴AC就是线段DE的垂直平分线,即AC⊥DE.
连接AC,∵∠AED=45°,
∴∠BAC=45°,
又∵AB⊥BC,
∴∠ACB=45°,
∴BA=BC.
(3)∵∠FBC=30°,∴∠ABF=60°.
连接AF,BF、AD的延长线相交于点G,
∵∠FBC=30°,∠DCB=75°,
∴∠BFC=75°,故BC=BF.
由(2)知:BA=BC,故BA=BF,
∵∠ABF=60°,
∴AB=BF=FA,
又∵AD∥BC,AB⊥BC,
∴∠FAG=∠G=30°.
∴FG=FA=FB.
∵∠G=∠FBC=30°,∠DFG=∠CFB,FB=FG,
∴△BCF≌△GDF.
∴DF=CF,即点F是线段CD的中点.
∴
DF
FC=1.
∴∠ADC=105°.
由等边△DCE可知∠CDE=60°,
故∠ADE=45°.
由AB⊥BC,AD∥BC,可得∠DAB=90°,
∴∠AED=45°.
(2)证明:由(1)知∠AED=45°,
∴AD=AE,故点A在线段DE的垂直平分线上.
由△DCE是等边三角形得CD=CE,故点C也在线段DE的垂直平分线上.
∴AC就是线段DE的垂直平分线,即AC⊥DE.
连接AC,∵∠AED=45°,
∴∠BAC=45°,
又∵AB⊥BC,
∴∠ACB=45°,
∴BA=BC.
(3)∵∠FBC=30°,∴∠ABF=60°.
连接AF,BF、AD的延长线相交于点G,
∵∠FBC=30°,∠DCB=75°,
∴∠BFC=75°,故BC=BF.
由(2)知:BA=BC,故BA=BF,
∵∠ABF=60°,
∴AB=BF=FA,
又∵AD∥BC,AB⊥BC,
∴∠FAG=∠G=30°.
∴FG=FA=FB.
∵∠G=∠FBC=30°,∠DFG=∠CFB,FB=FG,
∴△BCF≌△GDF.
∴DF=CF,即点F是线段CD的中点.
∴
DF
FC=1.
如图,在直角三梯形ABCD中,AD//BC,AB垂直BC,<DCB=75°,以CD为边的等边三角形DCE的另一顶点E在A
如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,∠A=60°,AB=2CD,点E,F分别为AB,AD的中点,连结EF
如图,梯形ABCD中,AD‖BC,AB=BC,∠ADC=120°对角线CA平分∠DCB,E为BC的中点,试求△DCE与四
如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、
如图,在梯形ABCD中,AD‖BC,角B=90°.把一个直角的顶点F放在边CD上,直角的一边经过顶点A,它的另一边与BC
如图,在直角梯形ABCD中,AD//BC,AB⊥BC,E是CD的中点,且AB=AD+BC,请问ABE是何种三角形,证明!
如图,直角梯形ABCD中,AB=7,∠B=90°,BC-AD=1,以CD为直径的圆与AB相交于两点E,F,且AE=1,在
如图,在梯形ABCD中,BC∥AD,∠A=90°,AB=2,BC=3,AD=4,E为AD的中点,F为CD的中点,P为BC
如图,在直角梯形ABCD中AD平行于BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连A
如图,在直角梯形ABCD中,角B=角A=90°,AD‖BC,AD+BC=CD,以CD为直径的圆与AB相切吗
如图 在直角梯形ABCD中,AB‖DC,AB⊥BC,角A=60°,AB=2CD,E、F分别为AB、AD的中点.连接EF、
如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F