作业帮 > 数学 > 作业

1求证 若p,q是奇数,则方程x^2+px+q=0不可能有整数根

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 22:48:35
1求证 若p,q是奇数,则方程x^2+px+q=0不可能有整数根
1求证 若p,q是奇数,则方程x^2+px+q=0不可能有整数根
由韦达定理得:
x1+x2=-p/1=-p
x1*x2=q/1=q
因为p,q为奇数,所以由第一个式子可知:x1,x2为一奇数一个偶数(因为奇数+偶数=奇数)
而从第二个式子可知x1,x2都为奇数(因为奇数*奇数=奇数)
所以两个结论相互矛盾
因此若p,q是奇数,则方程x^2+px+q=0不可能有整数根