已知抛物线y^2=4x的顶点为O,抛物线上A,B两点满足向量OA·向量OB=0,则点O到直线AB的最大距离为
已知坐标原点为O,A,B为抛物线y∧2=4x 上异于O的两点,且向量OA*向量OB=0 ,.
已知点A,B是双曲线x方-(y方/2)=1上的两点,O是坐标原点,且满足OA向量×OB向量=0,则点O到直线AB的距离等
已知抛物线C的方程y²=4x,O是坐标原点,AB为抛物线异于O的两点且向量OA×向量OB=0
已知抛物线y=x^2上两点A、B满足向量AP=λ向量PB(λ>0)其中点P的坐标为(0,1),向量OM=向量OA+向量O
过点(0,-1)的直线l与抛物线y=-x^2交与A,B两点,O是原点,则向量OA*向量OB=
已知点A,B是抛物线y²=2px(p>0)上的任意两点,O为坐标原点,若OA向量ob向量≥﹣1恒成立,则抛物线
A,B是抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),求证直线AB恒过一定点
设坐标原点为O,过抛物线Y方=2X的焦点F作直线交抛物线与A.B两点,则OA向量·OB向量的值为?
若A,B为抛物线y²=3x上的两点,点A(2,√6),O为顶点,OA⊥OB,求AB的长
F已知F为抛物线y^2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA向量点乘OB向量=2(其中O为坐标原点),则
8.设O为坐标原点,A、B为抛物线y2=4x上两点,F为抛物线的焦点,向量AF=λ向量FB(∈R),则向量OA·向量OB
已知直线y=k(x+1),k〉0与抛物线C:y^2=4x相交于A,B两点,O,F分别为C的顶点和焦点,若向量OA=λ向量