用泰勒公式证明不等式设f(x)在[0,1]二阶可导,且f(0)=f'(0)=f'(1)=0,f(1)=1求证:存在ξ∈(
不等式证明题设f(x)在区间[0,1]上二阶可微,且f'(0)=f'(1)=0 证明存在c属于(0,1)满足f''(c)
泰勒公式的证明题设lim(x->0)f(x)/x=1 且f''(x)>0 证明f(x)>=x
设函数f(x)在区间【0,1】上可导,且f(1)=0,证明至少存在一点$在(0,1)内,使得2$f($)+$*$f'$)
设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,试证明.必存在ξ∈(
设函数f(x)在(-∞,+∞)可导,且满足f(0)=1,f'(x)=f(x),证明f(x)=e^x
设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-
设f(x)在[0,x]上连续,在(0,x)内可导,且f(0)=0,证明:存在ξ∈(0,x),使得f(x)=(1+ξ)f’
设f(x)在[0,1]上二阶可导,且f(0)=f(1),设F(x)=(1-x)*f(x),证明:存在§属于(0,1)使得
设f(x)=(sinx^2+1),求f(x)在x=0点的带PEANO余项的泰勒公式,并求f(n)(0)
f(x)定义在(0,+无穷大) 当x>1时 f(x)>0,且f(xy)=f(x)+f(y) 解不等式f[x(x-1/2)
设f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x0∈[0,1/3]使得f(x0)=f(2x0+(1/
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明