求不定积分∫cosx/x^2dx
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/20 12:04:03
求不定积分∫cosx/x^2dx
∫ (cosx)/x² dx
= ∫ cosx d(- 1/x)
= - (cosx)/x + ∫ 1/x d(cosx)
= - (cosx)/x - ∫ (sinx)/x dx
= - (cosx)/x - Si(x) + C
Si(x)是正弦积分,无法用初等函数表示的.
或者用级数表示也行.
∫ (sinx)/x dx
= ∫ 1/x · ∑(k=0→∞) (- 1)^k x^(1 + 2k)/(1 + 2k)! dx
= ∑(k=0→∞) (- 1)^k/(1 + 2k)! · ∫ x^(2k) dx
= ∑(k=0→∞) (- 1)^k/(1 + 2k)! · x^(2k + 1)/(2k + 1) + C
= ∑(k=0→∞) [(- 1)^k x^(2k + 1)]/[(1 + 2k)!(1 + 2k)] + C
∴∫ (cosx)/x² dx
= - (cosx)/x - ∑(k=0→∞) [(- 1)^k x^(2k + 1)]/[(1 + 2k)!(1 + 2k)] + C,若你能化简这个级数就行.
= ∫ cosx d(- 1/x)
= - (cosx)/x + ∫ 1/x d(cosx)
= - (cosx)/x - ∫ (sinx)/x dx
= - (cosx)/x - Si(x) + C
Si(x)是正弦积分,无法用初等函数表示的.
或者用级数表示也行.
∫ (sinx)/x dx
= ∫ 1/x · ∑(k=0→∞) (- 1)^k x^(1 + 2k)/(1 + 2k)! dx
= ∑(k=0→∞) (- 1)^k/(1 + 2k)! · ∫ x^(2k) dx
= ∑(k=0→∞) (- 1)^k/(1 + 2k)! · x^(2k + 1)/(2k + 1) + C
= ∑(k=0→∞) [(- 1)^k x^(2k + 1)]/[(1 + 2k)!(1 + 2k)] + C
∴∫ (cosx)/x² dx
= - (cosx)/x - ∑(k=0→∞) [(- 1)^k x^(2k + 1)]/[(1 + 2k)!(1 + 2k)] + C,若你能化简这个级数就行.
求不定积分∫sin(2x)/(1+cosx)dx
求下列不定积分:∫(e^2x-cosx/3)dx
求不定积分∫x.sinx^2.cosx^2dx
积分题:求∫ln(cosx)dx/(cosx)^2不定积分
求不定积分:∫ cosx/(sinx+cosx) dx
求不定积分:∫(sin²7x/(tanx + cosx) dx,
求不定积分 ∫x/(1+cosx)dx
求不定积分x/(1+cosx)dx,
求不定积分:1.∫e^(sinx)[x(cosx)^3-sinx]/(cosx)^2dx 2.∫[e^(3x)+e^x]
求定积分或不定积分 ∫(x²+2x-3cosx)dx ∫xcosx(5+x²)dx
求解不定积分:∫x^2/(xsinx+cosx)^2 dx
计算不定积分∫(cosX+e^2+3x)dx