(2014•重庆)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 11:30:50
(2014•重庆)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:
(1)AF=CG;
(2)CF=2DE.
(1)AF=CG;
(2)CF=2DE.
证明:(1)∵∠ACB=90°,CG平分∠ACB,
∴∠ACG=∠BCG=45°,
又∵∠ACB=90°,AC=BC,
∴∠CAF=∠CBF=45°,
∴∠CAF=∠BCG,
在△AFC与△CGB中,
∠ACF=∠CBG
∠CAF=∠BCG
AC=BC,
∴△AFC≌△CBG(ASA),
∴AF=CG;
(2)延长CG交AB于H,
∵CG平分∠ACB,AC=BC,
∴CH⊥AB,CH平分AB,
∵AD⊥AB,
∴AD∥CG,
∴∠D=∠EGC,
在△ADE与△CGE中,
∠AED=∠CEG
∠D=∠EGC
AE=CE,
∴△ADE≌△CGE(AAS),
∴DE=GE,
即DG=2DE,
∵AD∥CG,CH平分AB,
∴DG=BG,
∵△AFC≌△CBG,
∴CF=BG,
∴CF=2DE.
∴∠ACG=∠BCG=45°,
又∵∠ACB=90°,AC=BC,
∴∠CAF=∠CBF=45°,
∴∠CAF=∠BCG,
在△AFC与△CGB中,
∠ACF=∠CBG
∠CAF=∠BCG
AC=BC,
∴△AFC≌△CBG(ASA),
∴AF=CG;
(2)延长CG交AB于H,
∵CG平分∠ACB,AC=BC,
∴CH⊥AB,CH平分AB,
∵AD⊥AB,
∴AD∥CG,
∴∠D=∠EGC,
在△ADE与△CGE中,
∠AED=∠CEG
∠D=∠EGC
AE=CE,
∴△ADE≌△CGE(AAS),
∴DE=GE,
即DG=2DE,
∵AD∥CG,CH平分AB,
∴DG=BG,
∵△AFC≌△CBG,
∴CF=BG,
∴CF=2DE.
如图,在△ABC中,已知∠A=90°时,AD⊥BC于D,E为直角边AC的中点,过D、E作直线交AB的延长线于F.求证:A
如图,在等腰RT△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF//AC交DE的延长线于
如图,在Rt△ABC中,∠C=90°,AC=BC,BE平分∠ABC交AC于E,过A作AD⊥BE的延长线交于点D,求证:A
如图 在等腰RT△ABC中∠ACB=90 D为BC的中点DE垂直AB 垂足为点E 过点B作BF平行AC交DE的延长线于点
如图,在三角形ABC中,角ACB=90°,P是AC的中点,过点A作AD垂直BP于点E,交BC的延长线于点D,若角DBE=
如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点
如图,在△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD,垂足为点E,BF‖AC交CE的延长线于点F
如图,在等腰Rt△ABC中,∠ACB=90°,D为的BD中点,DE⊥AB,垂足为E,过点B作BF平行AC交DE的延长线于
已知:如图,在△ABC中,角ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E电作AC的垂线交CD的延长线
在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF‖AC交DE的延长线于
如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,DE‖AC,DE交AB于点E,M为BE的中点
如图,△ABC中,AB=AC,D为BC中点,E为AD上任意一点,过C作CF‖AB交BE的延长线于F,交AC于G,连接CE