设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn}的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:36:36
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn}的前10项和S10及T10
a1=b1=1
a2=1+d
a4=1+3d
a3=1+2d
b3=q^2
b2=q
b4=q^3
a2+a4=b3
所以1+d+1+3d=q^2,
2+4d=q^2
b2b4=a3
q^4=1+2d
相除
(2+4d)/(1+2d)=q^2/q^4
q^2=1/2
d=(q^2-2)/4=-3/8
q=±√2/2
S10=(a1+a10)*10/2
=(a1+a1+9d)*10/2
=(2-27/8)*5
=-55/8
T10=b1*(1-q^10)/(1-q)
=1*[1-(1/2)^5]/(1±√2/2)
=(62±31√2)/32
a2=1+d
a4=1+3d
a3=1+2d
b3=q^2
b2=q
b4=q^3
a2+a4=b3
所以1+d+1+3d=q^2,
2+4d=q^2
b2b4=a3
q^4=1+2d
相除
(2+4d)/(1+2d)=q^2/q^4
q^2=1/2
d=(q^2-2)/4=-3/8
q=±√2/2
S10=(a1+a10)*10/2
=(a1+a1+9d)*10/2
=(2-27/8)*5
=-55/8
T10=b1*(1-q^10)/(1-q)
=1*[1-(1/2)^5]/(1±√2/2)
=(62±31√2)/32
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn}的
设{an}为等差数列,{bn}为等比数列,已知a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn
设an为等差数列,bn为等比数列,a1=b1=1,a2十a4=b3,b2b4=a3分别求出an及bn的前10项和S10及
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,(1)试求{an}及{bn}
设{an}未等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求{an} ,{bn}前
设{an}为等差数列{bn}为等比数列,切a1=b1=1.a2+a4=b3.b2b4=a3.
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,求{a}、{b}的通项公式
设﹛an﹜为等差数列,﹛bn﹜为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3
已知{an}为等差数列,{bn}为各项均是正数的等比数列,且a1=b1=1,a2+a4=b3,b2b4=a3
一道数学题设an为等差数列,bn为等比数列,a1+b1=1,a2+a4=b3,分别求出an和bn的前10项和
an为等差数列,bn为等比数列,a1=b1=1,a2+a4=b3,b2*b4=a3,求an的前10项和及bn