已知一族集合A1,A2,……,An具有性质: (1)每个Ai含有30个元素; (2)对每一对i、j:1≤i<j≤n,Ai
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 20:04:05
已知一族集合A1,A2,……,An具有性质: (1)每个Ai含有30个元素; (2)对每一对i、j:1≤i<j≤n,Ai
已知一族集合A1,A2,……,An具有性质:
(1)每个Ai含有30个元素;
(2)对每一对i、j:1≤i<j≤n,Ai∩Aj都是单元集;
(3)A1∩A2∩……∩An=空集
我在网上搜到了答案http://zhidao.baidu.com/question/313477621.html这个勉强能看懂,但第一步的用反证法证明含有相同元素的集合有30个,如何用反证法证明求解释
已知一族集合A1,A2,……,An具有性质:
(1)每个Ai含有30个元素;
(2)对每一对i、j:1≤i<j≤n,Ai∩Aj都是单元集;
(3)A1∩A2∩……∩An=空集
我在网上搜到了答案http://zhidao.baidu.com/question/313477621.html这个勉强能看懂,但第一步的用反证法证明含有相同元素的集合有30个,如何用反证法证明求解释
可以假设对Ai,A(i+1),…A(i+k)这(k+1)个集合彼此的交集都为同一元素a(即a是它们的公共元素),那么按性质3,当k最大时,a就不能出现在其他集合中.再结合性质2,不在该子族的另外的集合至少有k+1个元素,故有30≥k+1,所以k的最大值为29,也就是含有相同元素的集合至多有30.
为了使n最大,不妨假设这n个集合中恰好有30个含有相同元素的集合,去掉相同元素a后,这30个集合中每个集合都有29个元素,而其他集合中含有的与上述30个集合相同的元素的最多有29*29(理由就是前面证明的定理,注意由于已经有一个元素在前述的30个集合中了,所以含有相同元素的集合变为29,考虑性质2的制约,故对于不在前述的30个集合之内的集合应有29^2个)加上前面的30个,共有841+30=871.
以上的方法是正面进攻,反面进攻.
假设有K(K>30)个含有相同元素的集合,那么对于第K+1个集合而言,它一定含有前K个集合中的元素,即其元素总数大于30,与性质一矛盾.
为了使n最大,不妨假设这n个集合中恰好有30个含有相同元素的集合,去掉相同元素a后,这30个集合中每个集合都有29个元素,而其他集合中含有的与上述30个集合相同的元素的最多有29*29(理由就是前面证明的定理,注意由于已经有一个元素在前述的30个集合中了,所以含有相同元素的集合变为29,考虑性质2的制约,故对于不在前述的30个集合之内的集合应有29^2个)加上前面的30个,共有841+30=871.
以上的方法是正面进攻,反面进攻.
假设有K(K>30)个含有相同元素的集合,那么对于第K+1个集合而言,它一定含有前K个集合中的元素,即其元素总数大于30,与性质一矛盾.
1、已知一族集合A1、A2……An具有性质 :(1)每个Ai含有三十个元素; (2)对每一对i、j:1小于等于i小于j小
高中数学集合奥赛问题已知一族集合A1,A2,……,An具有性质: (1)每个Ai含有30个元素; (2)对每一对i、j:
已知数集A={a1,a2,…,an}(1≤a1<a2<…an,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),ai
(2012•湖北模拟)已知数列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性质P;对任意i,j(1≤i
已知数集A={a1,a2,…ak}具有性质P:对任意i,j(1
集合的应用 已知数集A={a1,a2,········an}(1≤a1<a2<···an,n≥2)具有性质P,对任意的i
给定数列a1,a2,…,an.对i=1,2,…,n-1,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,…,
设M为n元集,若M有k个不同的子集A1,A2,…,Ak,满足:对于每个i、j∈{1,2,…,k},有Ai∩Aj≠Ф,求正
已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bj(i=1,2,3,4; j=1,2)均为实
对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.
(2012•朝阳区二模)在如图所示的数表中,第i行第j列的数记为ai,j,且满足a1,j=2j-1,ai,1=i,ai+
在数列(an)中,an=2n-1,若一个7行12列的矩阵的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,