以△ABC的AB、AC为边向外作正方形ABDE及ACGF,作AN⊥BC于点N,延长NA交EF于M点,求证:EM=MF.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 13:11:29
以△ABC的AB、AC为边向外作正方形ABDE及ACGF,作AN⊥BC于点N,延长NA交EF于M点,求证:EM=MF.
过点E作EP垂直NM交NM的延长线于点P,过点F作FH垂直MN于点H,如下图所示,
∵∠EAP+∠BAN=90°,∠BAN+∠ABN=90°,
∴∠EAP=∠ABN,
在RT△EAP和RT△ABN中,
EA=AB
∠EAP=∠ABN
∠EPA=∠ANB,
∴△EAP≌△ABN,
故可得:EP=AN,
同理可得:RT△FHA≌RT△ANC,
故可得:FH=AN=EP,
从而可证得:RT△EMP≌RT△FMH,
故EM=MF.
∵∠EAP+∠BAN=90°,∠BAN+∠ABN=90°,
∴∠EAP=∠ABN,
在RT△EAP和RT△ABN中,
EA=AB
∠EAP=∠ABN
∠EPA=∠ANB,
∴△EAP≌△ABN,
故可得:EP=AN,
同理可得:RT△FHA≌RT△ANC,
故可得:FH=AN=EP,
从而可证得:RT△EMP≌RT△FMH,
故EM=MF.
如图:已知△ABC,以AB,BC为一边向外作正方形ABDE,ACGF.连接EF.作AM⊥BC,延长MA交EF于N.求证:
如图,以△ABC的边AC.AB为边向外作正方形ABDE和正方形ACFG,AH⊥BC,交EG于M,垂足为H,求证EM=MG
已知在RT△ABC中,∠BAC=90°,以AB,BC为边向外作正方形ABDE和BCFG延长AB交DG于点P求证:AC=2
正方形题:以三角形ABC的边AB、AC为边向外作正方形ABDE和正方形ACFG,AH垂BC交EG于M,垂足为H,证EM=
初中证明题说下思路锐角三角形ABC,分别以AB、AC为边作正方形,连结EF,AN⊥EF,M为BC边上的点,求证BM =
如图,分别以三角形ABC的边AB,AC为边,向外作正方形ABFG和ACDE,作FM垂直于BC,交CB的延长线于点M,作D
如图,以△ABC的边BC为直径作圆O分别交AB、AC于点F点E,AD⊥BC于D,AD交于圆O于M,交BE于H,求证:DM
已知在△ABC中,BC的中垂线DE,交∠BAC的平分线于点E,作EM⊥AC,交AC的延长线于点M,求证:AB=AC+2M
已知,如图,△ABC中,∠ACB=90°,以AC为边向外作正方形ACDE,BE交AC于点F,过F点作FP//BC,交AB
分别以△ABC的两边AB,AC为边长向形外作正方形ABDE和ACFG,AH⊥BC于点H,HA的延长线交EG于点M,求证:
已知,如图,分别以△ABC的两边AB、AC为边长向外作正方形ABDE和ACFG,AH⊥BC与点H,HA的延长线交EG与点
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.