作业帮 > 综合 > 作业

(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 07:25:04
(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=(  )

A.
3
2
(2009•乐山)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点
过O点作OE⊥AB OF⊥AC OG⊥BC,

∴∠OGC=∠OFC=∠OED=90°,
∵∠C=90°,AC=6 BC=8,
∴AB=10
∵⊙O为△ABC的内切圆,
∴AF=AE,CF=CG (切线长相等)
∵∠C=90°,
∴四边形OFCG是矩形,
∵OG=OF,
∴四边形OFCG是正方形,
设OF=x,则CF=CG=OF=x,AF=AE=6-x,BE=BG=8-x,
∴6-x+8-x=10,
∴OF=2,
∴AE=4,
∵点D是斜边AB的中点,
∴AD=5,
∴DE=AD-AE=1,
∴tan∠ODA=
OE
DE=2.
故选D.