设x,y,z为不全为零的实数,求证 (2yz+2zx+xy)/(x^2+y^2+z^2)≤(√33+1)/4
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 23:49:46
设x,y,z为不全为零的实数,求证 (2yz+2zx+xy)/(x^2+y^2+z^2)≤(√33+1)/4
设x,y,z为不全为零的实数,求证
(2yz+2zx+xy)/(x^2+y^2+z^2)≤(√33+1)/4
证明:只需考虑x≥0,y≥0,z≥0,
2yz+2zx+xy≤1/2xx+1/2yy+γyy+(1/γ)zz+(1/γ)zz+γxx……
为什么要这样设γ?是怎么想到的?
设x,y,z为不全为零的实数,求证
(2yz+2zx+xy)/(x^2+y^2+z^2)≤(√33+1)/4
证明:只需考虑x≥0,y≥0,z≥0,
2yz+2zx+xy≤1/2xx+1/2yy+γyy+(1/γ)zz+(1/γ)zz+γxx……
为什么要这样设γ?是怎么想到的?
这个主要是由於分子和分母是齐次的,而且yz和xz系数相同,但是与xy不相同,所以要添加一个系数让
1/2(x²+y²) >=xy
γx² + 1/γ z² >= 2xz
γy² + 1/γ z² >= 2yz
相加得(1/2+1/γ)x² + (1/2+1/γ)y² + 2/γz² >= 2yz+2zx+xy
若(1/2+1/γ) = 2/γ = 1刚好得γ = 2
其实就是刚好凑出来得,当然可以分别给3个方程都配上系数,那麽可以得到一个3元1次方程,可以解出3个系数来,和这裏得系数刚好一样
1/2(x²+y²) >=xy
γx² + 1/γ z² >= 2xz
γy² + 1/γ z² >= 2yz
相加得(1/2+1/γ)x² + (1/2+1/γ)y² + 2/γz² >= 2yz+2zx+xy
若(1/2+1/γ) = 2/γ = 1刚好得γ = 2
其实就是刚好凑出来得,当然可以分别给3个方程都配上系数,那麽可以得到一个3元1次方程,可以解出3个系数来,和这裏得系数刚好一样
已知:实数 x y z 不全为 0 求证:√x2+xy+y2 + √y2+yz+z2 + √z2+zx+x2 >3/2
设x,y,z为正实数,x+y+z=1.求证:yz/x+zx/y+xy/z+9xyz>=1+x^2+y^2+z^2
x,y,z是三个不全为0的实数,求(xy+2yz)/(x+y+z)的最大值
已知2x-3y-z=0,x+3y-14z=0,且x,y,z不全为0,求4x的平方-5xy+z的平方/xy+yz+zx的值
若x,y,z,w是不全为零的实数,求xy+2yz+zw/x^2+y^2+z^2+w^2的最小值
已知x-4y-z=0,2x+y-8z=0,且xyz不全为0,求x:y:z的值?的值?求代数xy+yz+zx分之x
已知x,y,z为实数.(1)试比较xy+yz+zx与x^2+y^2+z^2的大小?
已知非零实数xyz满足xy=a,yz=b,zx=c,则x^2+y^2+z^2的值为
证明 (x+y+z)^2>3(xy+yz+zx)
XYZ满足XY/X+Y=-2,YZ/Y+Z=3/4,ZX/Z+X=-4/3,求XYZ/XY+YZ+ZX的值
设实数x,y,z满足x2+y2+z2-xy-yz-zx=27,则|y-z|的最大值为?
已知2X-3Y-Z=0,X+3Y-14Z=0,X,Y,Z不全为0,求【4X的平方-5XY+Z的平方】除以【XY+YZ+Z