怎样证明两个可积函数的乘积也可积?即f(x),g(x)可积,证明f(x)g(x)亦可积
证明如果两个可导函数f(x)与g(x),满足f(0)=0,g(x)=0且它们导数存在,g(x)不为0那么f(x)/g
f为[0,1]上的可积函数 g(x)=积分f(t)/t dt(上限为1,下限为x) 证明在[0,1]上g(x)和f(x)
设f(x)与g(x)均为可导函数,且有g(x)=f(x+c),其中c为常数,利用倒数的定义证明g’(x)=f’(x+c)
证明如果两个可导函数f(x)和g(x),满足f(x)=0,g(0)=0,且f'(0)及g'(0)存在,g'(0)不等于0
设函数 f(x)和g(x)在D上有界,证明函数f(x)+g(x),f(x)-g(x),f(x)* g(x)在D上也有界
一道定积分的证明题若f(x)在[a,b]上有界并可积,则G(x)=∫0xf(t)dt在[a,b]上连续.(即f(t)在0
证明f(x)=sgn(sinπ/x)可积
已知f(x)连续可导,证明g((x,y),(a,b))亦连续.
2.设f( x )、g( x )是定义域为R的 恒大于零的可导函数,f'(x)g(x)-g'(x)f(x)<0.即有:
设f(x) ,g(x)是定义域为R的恒大于零的可导函数,且f'(x)g(x)-f(x)g'(x)
设f(x),g(x)是定义域为R的恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)
设f(x),g(x)是恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)小于0.