在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 19:05:36
在数列{an}中,a1=1,an+1=an+c(c为常数,n∈N*),且a1,a2,a5成公比不为1的等比数列.
(1)求c的值;
(2)设b
(1)求c的值;
(2)设b
(1)∵an+1=an+c
∴an+1-an=c
∴数列{an}是以a1=1为首项,以c为公差的等差数列
a2=1+c,a5=1+4c
又a1,a2,a5成公比不为1的等比数列
∴(1+c)2=1+4c
解得c=2或c=0(舍)
(2)由(1)知,an=2n-1
∴bn=
1
(2n−1)(2n+1)=
1
2(
1
2n−1−
1
2n+1)
∴Sn=
1
2[(1−
1
3)+(
1
3 −
1
5)+…+(
1
2n−1−
1
2n+1)]=
1
2(1−
1
2n+1)=
n
2n+1
∴an+1-an=c
∴数列{an}是以a1=1为首项,以c为公差的等差数列
a2=1+c,a5=1+4c
又a1,a2,a5成公比不为1的等比数列
∴(1+c)2=1+4c
解得c=2或c=0(舍)
(2)由(1)知,an=2n-1
∴bn=
1
(2n−1)(2n+1)=
1
2(
1
2n−1−
1
2n+1)
∴Sn=
1
2[(1−
1
3)+(
1
3 −
1
5)+…+(
1
2n−1−
1
2n+1)]=
1
2(1−
1
2n+1)=
n
2n+1
在数列an中,a1=1 a(n+1)=an/c*an+1 (c为常数) 且a1,a2,a5呈公比不等于1的等比数列 问:
在数列an中,a1=1 a(n+1)=an/c*an+1 (c为常数) 且a1,a2,a5呈公比不等于1的等比数列 问
数列an中a1=2,a(n+1)=an+cn(c是常数),a1 a2 a3成公比不为1的等比数列.求c ,求an的通项公
数列{an}中,A1=2 An+1=An+cn(c=2,n=1,2…),且a1,a2,a3成公比不为1的等比数列 ,求{
数列{an}中,已知a1=2,an+1=an+cn(n∈N*,常数c≠0),且a1,a2,a3成等比数列
已知数列{an}中,a1=2,an+1=an+cn(c是不为0的常数,n∈N*),a1,a2,a3成等比数列,求{an}
在数列{an}中,a1=2,an+1=an+cn(c是常数),且a1a2a3成等比数列求数列{an-c/nc^n}的前n
在数列{an}中,a1=2,an+1=an+cn(c是常数),且a1a2a3成公比不为1的等比数列.一:求c的值.二:求
在等比数列{an}中,an>0(n为正整数),公比q∈﹙0,1﹚,且a1*a5+2*a3*a5+a2*a8=25,a3与
等比数列{an}的公比为正数,且a3*a9=2(a5*a5),a2=1,则a1=( )
已知数列{an}满足a1=1,a2=r(r>0),数列{bn}是公比为q的等比数列(q>0),bn=ana(n+1),c
数列{an}中,a1=2,a2=3,且{anan+1}是以3为公比的等比数列,若bn=2a2n-1+a2n(n为正整数)