关于x的实系数方程x2-ax+2b=0的一根在区间[0,1]上,另一根在区间[1,2]上,则2a+3b的最大值为 ___
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 13:23:43
关于x的实系数方程x2-ax+2b=0的一根在区间[0,1]上,另一根在区间[1,2]上,则2a+3b的最大值为 ______.
令f(x)=x2-ax+2b,
据题意知函数在[0,1],[1,2]内各存在一零点,
结合二次函数图象可知满足条件
f(0)≥0
f(1)≤0
f(2)≥0⇒
b≥0
1−a+2b≤0
4−2a+2b≥0
在直角坐标系中作出满足不等式的点(a,b)所在的可行域,
问题转化为确定线性目标函数:z=2a+3b的最优解,
结合图形可知当线性目标函数:z=2a+3b位于点C(3,1)即a=3,b=1时,
目标函数取得最大值9.
故答案为:9.
据题意知函数在[0,1],[1,2]内各存在一零点,
结合二次函数图象可知满足条件
f(0)≥0
f(1)≤0
f(2)≥0⇒
b≥0
1−a+2b≤0
4−2a+2b≥0
在直角坐标系中作出满足不等式的点(a,b)所在的可行域,
问题转化为确定线性目标函数:z=2a+3b的最优解,
结合图形可知当线性目标函数:z=2a+3b位于点C(3,1)即a=3,b=1时,
目标函数取得最大值9.
故答案为:9.
关于x的实系数方程x^2 - ax+2b=0的一根在区间(0,1)上,另一根在区间(1,2)上,则 2a+3b最大值?
关于x的实系数方程x^2+ax+2b=0的一根在区间(0,1)上,另一根在(1,2)上,则点(a,b)所在区域的面积多
若关于x的实系数方程x^2+ax+b=0有两个根,一个根在区间(0,1)内,另一根在区间(1,3)内,记点(a,b)对应
已知关于x的实系数方程x2+ax+2b=0的一根在(0,1)内,另一根在(1,2)内,则点(a,b)所在区域的面积为__
若关于x的实系数方程x2+ax+b=0有两个根,一个根在区间(0,1)内,另一根在区间(1,3)内
已知方程 X平方+aX+2b=0其一根在区间(0,1)内,另一根在区间(1,2)内则z=(a+3)平方+b平方 的取值范
在区间[0,2]上随机取一个数a,在区间[0,4]上随机取一个数b,则关于x的方程x2+2ax+b=0有实根的概率是__
函数y=-x2-4x+1在区间[a,b](b>a>-2)上的最大值为4,最小值为-4,则a=?,b=?
关于x的实系数方程x函数x^2+ax+2b=0的一根在(0,1)内,另一根在(1,2)内.则点(a,b)所在区域的面积
8.若函数f(x)= -x2+ax-(a/4)+(1/2)在区间[0,1]上的最大值为2,求a的值
已知关于X的2次方程X2+ax+1=0的一根在区间(0,1)另一根在(1,2)内求a的范围.
已知关于X的2次方程X2+ax+1=0的一根在区间(0,1)另一根在(1,2)内,求a的取值范围.