已知抛物线y=x2-(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:05:36
已知抛物线y=x2-(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
(1) 写出A,B,C三点的坐标;
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值.
还有
已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
(1) 写出A,C三点的坐标;
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。
(1) 写出A,B,C三点的坐标;
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值.
还有
已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
(1) 写出A,C三点的坐标;
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。
已知抛物线y=x^2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边)
(1) 写出A,B,C三点的坐标;
令x = 0,由y=x^2+(2-m)x-2m(m≠2),有
y = -2m,
所以,
A的坐标为(0,-2m)
令y = 0,由y=x^2+(2-m)x-2m(m≠2),有
x^2 + (2-m)x -2m = 0,
(x+2)(x-m) = 0
得
x1 = -2,x2 = m
因,B点在C点左边.所以,
当 m < -2时,B,C的坐标分别为(m,0)和(-2,0).
当 m > -2,但m≠2时,B,C的坐标分别为(-2,0)和(m,0).
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
m=a^2-2a+4 = (a-1)^2 + 3 >= 3.
此时,由(1)的结论知,A的坐标为(0,-2m),B,C的坐标分别为(-2,0)和(m,0).
AB^2 = 4m^2 + 4
BC^2 = (m+2)^2 = m^2 + 4m + 4
AC^2 = m^2 + 4m^2 = 5m^2
由m>=3知,
3m^2 = m*(3m)>=9m > 4m,
AB^2 = 4m^2 + 4 > m^2 + 4m + 4 = BC^2,
AB> BC.
m^2 >= 9 > 4,
AC^2 = 5m^2 > 4m^2 + 4 = AB^2,
AC > AB.
所以,
AC > AB > BC.
但
AB^2 + BC^2 = 5m^2 + 4m + 8 > 5m^2 = AC^2.
所以,
不存在实数a,使△ABC为Rt△.
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值.
m=a2-2a+4 = (a-1)^2 + 3 >= 3.
由(2)的结论知,AC > AB > BC.
所以,∠BAC 最小.
因此,不存在实数a,能使得∠BAC最大.
(1) 写出A,B,C三点的坐标;
令x = 0,由y=x^2+(2-m)x-2m(m≠2),有
y = -2m,
所以,
A的坐标为(0,-2m)
令y = 0,由y=x^2+(2-m)x-2m(m≠2),有
x^2 + (2-m)x -2m = 0,
(x+2)(x-m) = 0
得
x1 = -2,x2 = m
因,B点在C点左边.所以,
当 m < -2时,B,C的坐标分别为(m,0)和(-2,0).
当 m > -2,但m≠2时,B,C的坐标分别为(-2,0)和(m,0).
(2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由;
m=a^2-2a+4 = (a-1)^2 + 3 >= 3.
此时,由(1)的结论知,A的坐标为(0,-2m),B,C的坐标分别为(-2,0)和(m,0).
AB^2 = 4m^2 + 4
BC^2 = (m+2)^2 = m^2 + 4m + 4
AC^2 = m^2 + 4m^2 = 5m^2
由m>=3知,
3m^2 = m*(3m)>=9m > 4m,
AB^2 = 4m^2 + 4 > m^2 + 4m + 4 = BC^2,
AB> BC.
m^2 >= 9 > 4,
AC^2 = 5m^2 > 4m^2 + 4 = AB^2,
AC > AB.
所以,
AC > AB > BC.
但
AB^2 + BC^2 = 5m^2 + 4m + 8 > 5m^2 = AC^2.
所以,
不存在实数a,使△ABC为Rt△.
(3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值.
m=a2-2a+4 = (a-1)^2 + 3 >= 3.
由(2)的结论知,AC > AB > BC.
所以,∠BAC 最小.
因此,不存在实数a,能使得∠BAC最大.
已知抛物线y=-(x-m)²+1与x轴的交点为A,B.(B在A的右边),与y轴的交点为C.当点B在原点的右边,
已知抛物线y=ax2+bx+c与x轴交于A、B点(A点在B点的左边),与y轴交点C的纵坐标为2.若方程x2+bax+ca
已知抛物线y=x2+(m+4)x-2(m+6)(m为常数,m≠-8))与x轴有两个不同的交点A、B,点A、点B关于直线x
已知抛物线y=-(x-m)^2+1与x轴的交点为A、B(B在A的右边),与y轴的交点为C
已知抛物线y=-(x-m)^2+1与x轴的交点为A、B(B在A的右边),与y轴的交点为C,顶点为D.
已知抛物线y=-(x-m)2+1与x数的交点为A,B(B在A的右边),与y轴的交点为C,顶点为D.
已知抛物线y=-(x-m)2+1与x轴的交点为A、B(B在A的右边),与y轴的交点为C.
已知抛物线y=-(x-m)²+1与x轴的焦点为A,B(B在A的右边),与y轴的交点为C.问当点B在原点的右边,
如图,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
数学2次函数的题已知抛物线y=-(x-m)²+1轴的交点为A、B两点(B在A的右边),与y轴的交点为C(1)当
已知抛物线y=-(x-m)方+1与x 轴的交点为A、B、(B在A的右边),与y轴的交点为C,顶点为D.(1)当m=1时,
已知函数y=x2-(m2-4m+8)x-2(m2-4m+10)的图像与y轴的交点为A,与x轴交于B,C(C在B右侧)