设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:12:32
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
试证:必存在ξ∈(0,3),使f′(ξ)=0.
试证:必存在ξ∈(0,3),使f′(ξ)=0.
因为f(x)在[0,3]上连续,
所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,
于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,
故:m≤
f(0)+f(1)+f(2)
3≤M,
由介值定理知,至少存在一点c∈[0,2],使得:
f(c)=
f(0)+f(1)+f(2)
3=1,
又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,
故:必存在ξ∈(c,3)⊂(0,3),使f′(ξ)=0.
所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M和最小值m,
于是:m≤f(0)≤M,m≤f(1)≤M,m≤f(2)≤M,
故:m≤
f(0)+f(1)+f(2)
3≤M,
由介值定理知,至少存在一点c∈[0,2],使得:
f(c)=
f(0)+f(1)+f(2)
3=1,
又由:f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,满足罗尔定理的条件,
故:必存在ξ∈(c,3)⊂(0,3),使f′(ξ)=0.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
设函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在[0,7]上,只有f(1)=f(3)
设函数f(x)在定义域(0,+∞)上为减函数,且f(xy)=f(x)+f(y).f(1/3)=1
设函数f(x)在闭区间「0,1」上连续,在(0,1)上可导,且f(0)=0,f(1)=1/3,
设函数f(x)是定义在(0,正无穷)上的增函数,且f(x/y)=f(x)-f(y),f(6)=1解不等式f(x+3)-f
设函数f(x)是定义在(0,+∞)上的单调增函数,且f(xy)=f(x)+f(y).若f(3)=1,求不等式f(x)+f
大一高数A上函数f(x)在【0,3】内连续,且在(0,3)内可导,f(0)+f(1)+f(2)=3 且f(3)=1 证函
设f(x)是定义在(0,+无穷大)内的增函数且f(xy)=f(x)+f(y)若f(3)=1且f(a)大于f(a-1)+2
设函数f(x)的定义在x不等于0上的函数,且f(X)满足f(x)+2f(x除以1)=3X,求f(x)的解析式
已知函数f(x)在定义域(0,正无穷)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1
设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:
设f(x)是定义在(0,正无穷大)内的增函数,且f(xy)=f(x)+f(y),若f(3)=1且f(a)>f(a-1)+