作业帮 > 数学 > 作业

已知关于x的一元二次方程(m2-1)x2-(2m-1)x+1=0(m为实数)的两个实数根的倒数和大于零,求m的取值范围.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 14:39:31
已知关于x的一元二次方程(m2-1)x2-(2m-1)x+1=0(m为实数)的两个实数根的倒数和大于零,求m的取值范围.
已知关于x的一元二次方程(m2-1)x2-(2m-1)x+1=0(m为实数)的两个实数根的倒数和大于零,求m的取值范围.
设方程的两根分别是x1和x2,根据根与系数的关系可得:x1+x2=
2m−1
m2−1,x1•x2=
1
m2−1

1
x1+
1
x2=
x1+x2
x1x2>0

2m−1
1>0
解得:m>
1
2且m≠1
△=[-(2m-1)]2-4(m2-1)
=4m2-4m+1-4m2+4=-4m+5
∵所给方程有两个实数根,
∴-4m+5≥0
∴m≤
5
4.
综上可得:m的取值范围为:
5
4≥m>
1
2且m≠1.